Metamath Proof Explorer


Theorem evlsscasrng

Description: The evaluation of a scalar of a subring yields the same result as evaluated as a scalar over the ring itself. (Contributed by AV, 12-Sep-2019)

Ref Expression
Hypotheses evlsscasrng.q Q=IevalSubSR
evlsscasrng.o O=IevalS
evlsscasrng.w W=ImPolyU
evlsscasrng.u U=S𝑠R
evlsscasrng.p P=ImPolyS
evlsscasrng.b B=BaseS
evlsscasrng.a A=algScW
evlsscasrng.c C=algScP
evlsscasrng.i φIV
evlsscasrng.s φSCRing
evlsscasrng.r φRSubRingS
evlsscasrng.x φXR
Assertion evlsscasrng φQAX=OCX

Proof

Step Hyp Ref Expression
1 evlsscasrng.q Q=IevalSubSR
2 evlsscasrng.o O=IevalS
3 evlsscasrng.w W=ImPolyU
4 evlsscasrng.u U=S𝑠R
5 evlsscasrng.p P=ImPolyS
6 evlsscasrng.b B=BaseS
7 evlsscasrng.a A=algScW
8 evlsscasrng.c C=algScP
9 evlsscasrng.i φIV
10 evlsscasrng.s φSCRing
11 evlsscasrng.r φRSubRingS
12 evlsscasrng.x φXR
13 6 ressid SCRingS𝑠B=S
14 13 eqcomd SCRingS=S𝑠B
15 10 14 syl φS=S𝑠B
16 15 oveq2d φImPolyS=ImPolyS𝑠B
17 5 16 eqtrid φP=ImPolyS𝑠B
18 17 fveq2d φalgScP=algScImPolyS𝑠B
19 8 18 eqtrid φC=algScImPolyS𝑠B
20 19 fveq1d φCX=algScImPolyS𝑠BX
21 20 fveq2d φIevalSubSBCX=IevalSubSBalgScImPolyS𝑠BX
22 eqid IevalSubSB=IevalSubSB
23 eqid ImPolyS𝑠B=ImPolyS𝑠B
24 eqid S𝑠B=S𝑠B
25 eqid algScImPolyS𝑠B=algScImPolyS𝑠B
26 crngring SCRingSRing
27 6 subrgid SRingBSubRingS
28 10 26 27 3syl φBSubRingS
29 6 subrgss RSubRingSRB
30 11 29 syl φRB
31 30 12 sseldd φXB
32 22 23 24 6 25 9 10 28 31 evlssca φIevalSubSBalgScImPolyS𝑠BX=BI×X
33 21 32 eqtrd φIevalSubSBCX=BI×X
34 2 6 evlval O=IevalSubSB
35 34 a1i φO=IevalSubSB
36 35 fveq1d φOCX=IevalSubSBCX
37 1 3 4 6 7 9 10 11 12 evlssca φQAX=BI×X
38 33 36 37 3eqtr4rd φQAX=OCX