Metamath Proof Explorer


Theorem evlsval

Description: Value of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 11-Mar-2015) (Revised by AV, 18-Sep-2021)

Ref Expression
Hypotheses evlsval.q Q = I evalSub S R
evlsval.w W = I mPoly U
evlsval.v V = I mVar U
evlsval.u U = S 𝑠 R
evlsval.t T = S 𝑠 B I
evlsval.b B = Base S
evlsval.a A = algSc W
evlsval.x X = x R B I × x
evlsval.y Y = x I g B I g x
Assertion evlsval I Z S CRing R SubRing S Q = ι f W RingHom T | f A = X f V = Y

Proof

Step Hyp Ref Expression
1 evlsval.q Q = I evalSub S R
2 evlsval.w W = I mPoly U
3 evlsval.v V = I mVar U
4 evlsval.u U = S 𝑠 R
5 evlsval.t T = S 𝑠 B I
6 evlsval.b B = Base S
7 evlsval.a A = algSc W
8 evlsval.x X = x R B I × x
9 evlsval.y Y = x I g B I g x
10 elex I Z I V
11 fveq2 s = S Base s = Base S
12 11 adantl i = I s = S Base s = Base S
13 12 csbeq1d i = I s = S Base s / b r SubRing s i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x = Base S / b r SubRing s i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x
14 fvex Base S V
15 14 a1i i = I s = S Base S V
16 simplr i = I s = S b = Base S s = S
17 16 fveq2d i = I s = S b = Base S SubRing s = SubRing S
18 simpll i = I s = S b = Base S i = I
19 oveq1 s = S s 𝑠 r = S 𝑠 r
20 19 ad2antlr i = I s = S b = Base S s 𝑠 r = S 𝑠 r
21 18 20 oveq12d i = I s = S b = Base S i mPoly s 𝑠 r = I mPoly S 𝑠 r
22 21 csbeq1d i = I s = S b = Base S i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x = I mPoly S 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x
23 ovexd i = I s = S b = Base S I mPoly S 𝑠 r V
24 simprr i = I s = S b = Base S w = I mPoly S 𝑠 r w = I mPoly S 𝑠 r
25 simplr i = I s = S b = Base S w = I mPoly S 𝑠 r s = S
26 simprl i = I s = S b = Base S w = I mPoly S 𝑠 r b = Base S
27 simpll i = I s = S b = Base S w = I mPoly S 𝑠 r i = I
28 26 27 oveq12d i = I s = S b = Base S w = I mPoly S 𝑠 r b i = Base S I
29 25 28 oveq12d i = I s = S b = Base S w = I mPoly S 𝑠 r s 𝑠 b i = S 𝑠 Base S I
30 24 29 oveq12d i = I s = S b = Base S w = I mPoly S 𝑠 r w RingHom s 𝑠 b i = I mPoly S 𝑠 r RingHom S 𝑠 Base S I
31 24 fveq2d i = I s = S b = Base S w = I mPoly S 𝑠 r algSc w = algSc I mPoly S 𝑠 r
32 31 coeq2d i = I s = S b = Base S w = I mPoly S 𝑠 r f algSc w = f algSc I mPoly S 𝑠 r
33 28 xpeq1d i = I s = S b = Base S w = I mPoly S 𝑠 r b i × x = Base S I × x
34 33 mpteq2dv i = I s = S b = Base S w = I mPoly S 𝑠 r x r b i × x = x r Base S I × x
35 32 34 eqeq12d i = I s = S b = Base S w = I mPoly S 𝑠 r f algSc w = x r b i × x f algSc I mPoly S 𝑠 r = x r Base S I × x
36 25 oveq1d i = I s = S b = Base S w = I mPoly S 𝑠 r s 𝑠 r = S 𝑠 r
37 27 36 oveq12d i = I s = S b = Base S w = I mPoly S 𝑠 r i mVar s 𝑠 r = I mVar S 𝑠 r
38 37 coeq2d i = I s = S b = Base S w = I mPoly S 𝑠 r f i mVar s 𝑠 r = f I mVar S 𝑠 r
39 28 mpteq1d i = I s = S b = Base S w = I mPoly S 𝑠 r g b i g x = g Base S I g x
40 27 39 mpteq12dv i = I s = S b = Base S w = I mPoly S 𝑠 r x i g b i g x = x I g Base S I g x
41 38 40 eqeq12d i = I s = S b = Base S w = I mPoly S 𝑠 r f i mVar s 𝑠 r = x i g b i g x f I mVar S 𝑠 r = x I g Base S I g x
42 35 41 anbi12d i = I s = S b = Base S w = I mPoly S 𝑠 r f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x f algSc I mPoly S 𝑠 r = x r Base S I × x f I mVar S 𝑠 r = x I g Base S I g x
43 30 42 riotaeqbidv i = I s = S b = Base S w = I mPoly S 𝑠 r ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x = ι f I mPoly S 𝑠 r RingHom S 𝑠 Base S I | f algSc I mPoly S 𝑠 r = x r Base S I × x f I mVar S 𝑠 r = x I g Base S I g x
44 43 anassrs i = I s = S b = Base S w = I mPoly S 𝑠 r ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x = ι f I mPoly S 𝑠 r RingHom S 𝑠 Base S I | f algSc I mPoly S 𝑠 r = x r Base S I × x f I mVar S 𝑠 r = x I g Base S I g x
45 23 44 csbied i = I s = S b = Base S I mPoly S 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x = ι f I mPoly S 𝑠 r RingHom S 𝑠 Base S I | f algSc I mPoly S 𝑠 r = x r Base S I × x f I mVar S 𝑠 r = x I g Base S I g x
46 22 45 eqtrd i = I s = S b = Base S i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x = ι f I mPoly S 𝑠 r RingHom S 𝑠 Base S I | f algSc I mPoly S 𝑠 r = x r Base S I × x f I mVar S 𝑠 r = x I g Base S I g x
47 17 46 mpteq12dv i = I s = S b = Base S r SubRing s i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x = r SubRing S ι f I mPoly S 𝑠 r RingHom S 𝑠 Base S I | f algSc I mPoly S 𝑠 r = x r Base S I × x f I mVar S 𝑠 r = x I g Base S I g x
48 15 47 csbied i = I s = S Base S / b r SubRing s i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x = r SubRing S ι f I mPoly S 𝑠 r RingHom S 𝑠 Base S I | f algSc I mPoly S 𝑠 r = x r Base S I × x f I mVar S 𝑠 r = x I g Base S I g x
49 13 48 eqtrd i = I s = S Base s / b r SubRing s i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x = r SubRing S ι f I mPoly S 𝑠 r RingHom S 𝑠 Base S I | f algSc I mPoly S 𝑠 r = x r Base S I × x f I mVar S 𝑠 r = x I g Base S I g x
50 df-evls evalSub = i V , s CRing Base s / b r SubRing s i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x
51 fvex SubRing S V
52 51 mptex r SubRing S ι f I mPoly S 𝑠 r RingHom S 𝑠 Base S I | f algSc I mPoly S 𝑠 r = x r Base S I × x f I mVar S 𝑠 r = x I g Base S I g x V
53 49 50 52 ovmpoa I V S CRing I evalSub S = r SubRing S ι f I mPoly S 𝑠 r RingHom S 𝑠 Base S I | f algSc I mPoly S 𝑠 r = x r Base S I × x f I mVar S 𝑠 r = x I g Base S I g x
54 53 fveq1d I V S CRing I evalSub S R = r SubRing S ι f I mPoly S 𝑠 r RingHom S 𝑠 Base S I | f algSc I mPoly S 𝑠 r = x r Base S I × x f I mVar S 𝑠 r = x I g Base S I g x R
55 10 54 sylan I Z S CRing I evalSub S R = r SubRing S ι f I mPoly S 𝑠 r RingHom S 𝑠 Base S I | f algSc I mPoly S 𝑠 r = x r Base S I × x f I mVar S 𝑠 r = x I g Base S I g x R
56 1 55 eqtrid I Z S CRing Q = r SubRing S ι f I mPoly S 𝑠 r RingHom S 𝑠 Base S I | f algSc I mPoly S 𝑠 r = x r Base S I × x f I mVar S 𝑠 r = x I g Base S I g x R
57 56 3adant3 I Z S CRing R SubRing S Q = r SubRing S ι f I mPoly S 𝑠 r RingHom S 𝑠 Base S I | f algSc I mPoly S 𝑠 r = x r Base S I × x f I mVar S 𝑠 r = x I g Base S I g x R
58 oveq2 r = R S 𝑠 r = S 𝑠 R
59 58 oveq2d r = R I mPoly S 𝑠 r = I mPoly S 𝑠 R
60 59 oveq1d r = R I mPoly S 𝑠 r RingHom S 𝑠 Base S I = I mPoly S 𝑠 R RingHom S 𝑠 Base S I
61 59 fveq2d r = R algSc I mPoly S 𝑠 r = algSc I mPoly S 𝑠 R
62 61 coeq2d r = R f algSc I mPoly S 𝑠 r = f algSc I mPoly S 𝑠 R
63 mpteq1 r = R x r Base S I × x = x R Base S I × x
64 62 63 eqeq12d r = R f algSc I mPoly S 𝑠 r = x r Base S I × x f algSc I mPoly S 𝑠 R = x R Base S I × x
65 58 oveq2d r = R I mVar S 𝑠 r = I mVar S 𝑠 R
66 65 coeq2d r = R f I mVar S 𝑠 r = f I mVar S 𝑠 R
67 66 eqeq1d r = R f I mVar S 𝑠 r = x I g Base S I g x f I mVar S 𝑠 R = x I g Base S I g x
68 64 67 anbi12d r = R f algSc I mPoly S 𝑠 r = x r Base S I × x f I mVar S 𝑠 r = x I g Base S I g x f algSc I mPoly S 𝑠 R = x R Base S I × x f I mVar S 𝑠 R = x I g Base S I g x
69 60 68 riotaeqbidv r = R ι f I mPoly S 𝑠 r RingHom S 𝑠 Base S I | f algSc I mPoly S 𝑠 r = x r Base S I × x f I mVar S 𝑠 r = x I g Base S I g x = ι f I mPoly S 𝑠 R RingHom S 𝑠 Base S I | f algSc I mPoly S 𝑠 R = x R Base S I × x f I mVar S 𝑠 R = x I g Base S I g x
70 eqid r SubRing S ι f I mPoly S 𝑠 r RingHom S 𝑠 Base S I | f algSc I mPoly S 𝑠 r = x r Base S I × x f I mVar S 𝑠 r = x I g Base S I g x = r SubRing S ι f I mPoly S 𝑠 r RingHom S 𝑠 Base S I | f algSc I mPoly S 𝑠 r = x r Base S I × x f I mVar S 𝑠 r = x I g Base S I g x
71 riotaex ι f I mPoly S 𝑠 R RingHom S 𝑠 Base S I | f algSc I mPoly S 𝑠 R = x R Base S I × x f I mVar S 𝑠 R = x I g Base S I g x V
72 69 70 71 fvmpt R SubRing S r SubRing S ι f I mPoly S 𝑠 r RingHom S 𝑠 Base S I | f algSc I mPoly S 𝑠 r = x r Base S I × x f I mVar S 𝑠 r = x I g Base S I g x R = ι f I mPoly S 𝑠 R RingHom S 𝑠 Base S I | f algSc I mPoly S 𝑠 R = x R Base S I × x f I mVar S 𝑠 R = x I g Base S I g x
73 4 oveq2i I mPoly U = I mPoly S 𝑠 R
74 2 73 eqtri W = I mPoly S 𝑠 R
75 6 oveq1i B I = Base S I
76 75 oveq2i S 𝑠 B I = S 𝑠 Base S I
77 5 76 eqtri T = S 𝑠 Base S I
78 74 77 oveq12i W RingHom T = I mPoly S 𝑠 R RingHom S 𝑠 Base S I
79 78 a1i W RingHom T = I mPoly S 𝑠 R RingHom S 𝑠 Base S I
80 74 fveq2i algSc W = algSc I mPoly S 𝑠 R
81 7 80 eqtri A = algSc I mPoly S 𝑠 R
82 81 coeq2i f A = f algSc I mPoly S 𝑠 R
83 75 xpeq1i B I × x = Base S I × x
84 83 mpteq2i x R B I × x = x R Base S I × x
85 8 84 eqtri X = x R Base S I × x
86 82 85 eqeq12i f A = X f algSc I mPoly S 𝑠 R = x R Base S I × x
87 4 oveq2i I mVar U = I mVar S 𝑠 R
88 3 87 eqtri V = I mVar S 𝑠 R
89 88 coeq2i f V = f I mVar S 𝑠 R
90 eqid g x = g x
91 75 90 mpteq12i g B I g x = g Base S I g x
92 91 mpteq2i x I g B I g x = x I g Base S I g x
93 9 92 eqtri Y = x I g Base S I g x
94 89 93 eqeq12i f V = Y f I mVar S 𝑠 R = x I g Base S I g x
95 86 94 anbi12i f A = X f V = Y f algSc I mPoly S 𝑠 R = x R Base S I × x f I mVar S 𝑠 R = x I g Base S I g x
96 95 a1i f A = X f V = Y f algSc I mPoly S 𝑠 R = x R Base S I × x f I mVar S 𝑠 R = x I g Base S I g x
97 79 96 riotaeqbidv ι f W RingHom T | f A = X f V = Y = ι f I mPoly S 𝑠 R RingHom S 𝑠 Base S I | f algSc I mPoly S 𝑠 R = x R Base S I × x f I mVar S 𝑠 R = x I g Base S I g x
98 97 mptru ι f W RingHom T | f A = X f V = Y = ι f I mPoly S 𝑠 R RingHom S 𝑠 Base S I | f algSc I mPoly S 𝑠 R = x R Base S I × x f I mVar S 𝑠 R = x I g Base S I g x
99 72 98 eqtr4di R SubRing S r SubRing S ι f I mPoly S 𝑠 r RingHom S 𝑠 Base S I | f algSc I mPoly S 𝑠 r = x r Base S I × x f I mVar S 𝑠 r = x I g Base S I g x R = ι f W RingHom T | f A = X f V = Y
100 99 3ad2ant3 I Z S CRing R SubRing S r SubRing S ι f I mPoly S 𝑠 r RingHom S 𝑠 Base S I | f algSc I mPoly S 𝑠 r = x r Base S I × x f I mVar S 𝑠 r = x I g Base S I g x R = ι f W RingHom T | f A = X f V = Y
101 57 100 eqtrd I Z S CRing R SubRing S Q = ι f W RingHom T | f A = X f V = Y