Metamath Proof Explorer


Theorem evlsval2

Description: Characterizing properties of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 12-Mar-2015) (Revised by AV, 18-Sep-2021)

Ref Expression
Hypotheses evlsval.q Q = I evalSub S R
evlsval.w W = I mPoly U
evlsval.v V = I mVar U
evlsval.u U = S 𝑠 R
evlsval.t T = S 𝑠 B I
evlsval.b B = Base S
evlsval.a A = algSc W
evlsval.x X = x R B I × x
evlsval.y Y = x I g B I g x
Assertion evlsval2 I Z S CRing R SubRing S Q W RingHom T Q A = X Q V = Y

Proof

Step Hyp Ref Expression
1 evlsval.q Q = I evalSub S R
2 evlsval.w W = I mPoly U
3 evlsval.v V = I mVar U
4 evlsval.u U = S 𝑠 R
5 evlsval.t T = S 𝑠 B I
6 evlsval.b B = Base S
7 evlsval.a A = algSc W
8 evlsval.x X = x R B I × x
9 evlsval.y Y = x I g B I g x
10 1 2 3 4 5 6 7 8 9 evlsval I Z S CRing R SubRing S Q = ι m W RingHom T | m A = X m V = Y
11 eqid Base T = Base T
12 simp1 I Z S CRing R SubRing S I Z
13 4 subrgcrng S CRing R SubRing S U CRing
14 13 3adant1 I Z S CRing R SubRing S U CRing
15 simp2 I Z S CRing R SubRing S S CRing
16 ovex B I V
17 5 pwscrng S CRing B I V T CRing
18 15 16 17 sylancl I Z S CRing R SubRing S T CRing
19 6 subrgss R SubRing S R B
20 19 3ad2ant3 I Z S CRing R SubRing S R B
21 20 resmptd I Z S CRing R SubRing S x B B I × x R = x R B I × x
22 21 8 eqtr4di I Z S CRing R SubRing S x B B I × x R = X
23 crngring S CRing S Ring
24 23 3ad2ant2 I Z S CRing R SubRing S S Ring
25 eqid x B B I × x = x B B I × x
26 5 6 25 pwsdiagrhm S Ring B I V x B B I × x S RingHom T
27 24 16 26 sylancl I Z S CRing R SubRing S x B B I × x S RingHom T
28 simp3 I Z S CRing R SubRing S R SubRing S
29 4 resrhm x B B I × x S RingHom T R SubRing S x B B I × x R U RingHom T
30 27 28 29 syl2anc I Z S CRing R SubRing S x B B I × x R U RingHom T
31 22 30 eqeltrrd I Z S CRing R SubRing S X U RingHom T
32 6 fvexi B V
33 simpl1 I Z S CRing R SubRing S x I I Z
34 elmapg B V I Z g B I g : I B
35 32 33 34 sylancr I Z S CRing R SubRing S x I g B I g : I B
36 35 biimpa I Z S CRing R SubRing S x I g B I g : I B
37 simplr I Z S CRing R SubRing S x I g B I x I
38 36 37 ffvelrnd I Z S CRing R SubRing S x I g B I g x B
39 38 fmpttd I Z S CRing R SubRing S x I g B I g x : B I B
40 simpl2 I Z S CRing R SubRing S x I S CRing
41 5 6 11 pwselbasb S CRing B I V g B I g x Base T g B I g x : B I B
42 40 16 41 sylancl I Z S CRing R SubRing S x I g B I g x Base T g B I g x : B I B
43 39 42 mpbird I Z S CRing R SubRing S x I g B I g x Base T
44 43 9 fmptd I Z S CRing R SubRing S Y : I Base T
45 2 11 7 3 12 14 18 31 44 evlseu I Z S CRing R SubRing S ∃! m W RingHom T m A = X m V = Y
46 riotacl2 ∃! m W RingHom T m A = X m V = Y ι m W RingHom T | m A = X m V = Y m W RingHom T | m A = X m V = Y
47 45 46 syl I Z S CRing R SubRing S ι m W RingHom T | m A = X m V = Y m W RingHom T | m A = X m V = Y
48 10 47 eqeltrd I Z S CRing R SubRing S Q m W RingHom T | m A = X m V = Y
49 coeq1 m = Q m A = Q A
50 49 eqeq1d m = Q m A = X Q A = X
51 coeq1 m = Q m V = Q V
52 51 eqeq1d m = Q m V = Y Q V = Y
53 50 52 anbi12d m = Q m A = X m V = Y Q A = X Q V = Y
54 53 elrab Q m W RingHom T | m A = X m V = Y Q W RingHom T Q A = X Q V = Y
55 48 54 sylib I Z S CRing R SubRing S Q W RingHom T Q A = X Q V = Y