Metamath Proof Explorer


Theorem evlsvarpw

Description: Polynomial evaluation for subrings maps the exponentiation of a variable to the exponentiation of the evaluated variable. (Contributed by SN, 21-Feb-2024)

Ref Expression
Hypotheses evlsvarpw.q Q = I evalSub S R
evlsvarpw.w W = I mPoly U
evlsvarpw.g G = mulGrp W
evlsvarpw.e × ˙ = G
evlsvarpw.x X = I mVar U Y
evlsvarpw.u U = S 𝑠 R
evlsvarpw.p P = S 𝑠 B I
evlsvarpw.h H = mulGrp P
evlsvarpw.b B = Base S
evlsvarpw.i φ I V
evlsvarpw.y φ Y I
evlsvarpw.s φ S CRing
evlsvarpw.r φ R SubRing S
evlsvarpw.n φ N 0
Assertion evlsvarpw φ Q N × ˙ X = N H Q X

Proof

Step Hyp Ref Expression
1 evlsvarpw.q Q = I evalSub S R
2 evlsvarpw.w W = I mPoly U
3 evlsvarpw.g G = mulGrp W
4 evlsvarpw.e × ˙ = G
5 evlsvarpw.x X = I mVar U Y
6 evlsvarpw.u U = S 𝑠 R
7 evlsvarpw.p P = S 𝑠 B I
8 evlsvarpw.h H = mulGrp P
9 evlsvarpw.b B = Base S
10 evlsvarpw.i φ I V
11 evlsvarpw.y φ Y I
12 evlsvarpw.s φ S CRing
13 evlsvarpw.r φ R SubRing S
14 evlsvarpw.n φ N 0
15 eqid Base W = Base W
16 eqid I mVar U = I mVar U
17 6 subrgring R SubRing S U Ring
18 13 17 syl φ U Ring
19 2 16 15 10 18 11 mvrcl φ I mVar U Y Base W
20 5 19 eqeltrid φ X Base W
21 1 2 3 4 6 7 8 9 15 10 12 13 14 20 evlspw φ Q N × ˙ X = N H Q X