Metamath Proof Explorer


Theorem evlsvarsrng

Description: The evaluation of the variable of polynomials over subring yields the same result as evaluated as variable of the polynomials over the ring itself. (Contributed by AV, 12-Sep-2019)

Ref Expression
Hypotheses evlsvarsrng.q Q = I evalSub S R
evlsvarsrng.o O = I eval S
evlsvarsrng.v V = I mVar U
evlsvarsrng.u U = S 𝑠 R
evlsvarsrng.b B = Base S
evlsvarsrng.i φ I A
evlsvarsrng.s φ S CRing
evlsvarsrng.r φ R SubRing S
evlsvarsrng.x φ X I
Assertion evlsvarsrng φ Q V X = O V X

Proof

Step Hyp Ref Expression
1 evlsvarsrng.q Q = I evalSub S R
2 evlsvarsrng.o O = I eval S
3 evlsvarsrng.v V = I mVar U
4 evlsvarsrng.u U = S 𝑠 R
5 evlsvarsrng.b B = Base S
6 evlsvarsrng.i φ I A
7 evlsvarsrng.s φ S CRing
8 evlsvarsrng.r φ R SubRing S
9 evlsvarsrng.x φ X I
10 1 3 4 5 6 7 8 9 evlsvar φ Q V X = g B I g X
11 2 5 evlval O = I evalSub S B
12 11 a1i φ O = I evalSub S B
13 12 fveq1d φ O V X = I evalSub S B V X
14 3 a1i φ V = I mVar U
15 eqid I mVar S = I mVar S
16 15 6 8 4 subrgmvr φ I mVar S = I mVar U
17 5 ressid S CRing S 𝑠 B = S
18 7 17 syl φ S 𝑠 B = S
19 18 eqcomd φ S = S 𝑠 B
20 19 oveq2d φ I mVar S = I mVar S 𝑠 B
21 14 16 20 3eqtr2d φ V = I mVar S 𝑠 B
22 21 fveq1d φ V X = I mVar S 𝑠 B X
23 22 fveq2d φ I evalSub S B V X = I evalSub S B I mVar S 𝑠 B X
24 eqid I evalSub S B = I evalSub S B
25 eqid I mVar S 𝑠 B = I mVar S 𝑠 B
26 eqid S 𝑠 B = S 𝑠 B
27 crngring S CRing S Ring
28 5 subrgid S Ring B SubRing S
29 7 27 28 3syl φ B SubRing S
30 24 25 26 5 6 7 29 9 evlsvar φ I evalSub S B I mVar S 𝑠 B X = g B I g X
31 13 23 30 3eqtrrd φ g B I g X = O V X
32 10 31 eqtrd φ Q V X = O V X