Metamath Proof Explorer


Theorem evlsvvval

Description: Give a formula for the evaluation of a polynomial given assignments from variables to values. This is the sum of the evaluations for each term (corresponding to a bag of variables), that is, the coefficient times the product of each variable raised to the corresponding power. (Contributed by SN, 5-Mar-2025)

Ref Expression
Hypotheses evlsvvval.q Q = I evalSub S R
evlsvvval.p P = I mPoly U
evlsvvval.b B = Base P
evlsvvval.u U = S 𝑠 R
evlsvvval.d D = h 0 I | h -1 Fin
evlsvvval.k K = Base S
evlsvvval.m M = mulGrp S
evlsvvval.w × ˙ = M
evlsvvval.x · ˙ = S
evlsvvval.i φ I V
evlsvvval.s φ S CRing
evlsvvval.r φ R SubRing S
evlsvvval.f φ F B
evlsvvval.a φ A K I
Assertion evlsvvval φ Q F A = S b D F b · ˙ M i I b i × ˙ A i

Proof

Step Hyp Ref Expression
1 evlsvvval.q Q = I evalSub S R
2 evlsvvval.p P = I mPoly U
3 evlsvvval.b B = Base P
4 evlsvvval.u U = S 𝑠 R
5 evlsvvval.d D = h 0 I | h -1 Fin
6 evlsvvval.k K = Base S
7 evlsvvval.m M = mulGrp S
8 evlsvvval.w × ˙ = M
9 evlsvvval.x · ˙ = S
10 evlsvvval.i φ I V
11 evlsvvval.s φ S CRing
12 evlsvvval.r φ R SubRing S
13 evlsvvval.f φ F B
14 evlsvvval.a φ A K I
15 fveq1 l = A l i = A i
16 15 oveq2d l = A b i × ˙ l i = b i × ˙ A i
17 16 mpteq2dv l = A i I b i × ˙ l i = i I b i × ˙ A i
18 17 oveq2d l = A M i I b i × ˙ l i = M i I b i × ˙ A i
19 18 oveq2d l = A F b · ˙ M i I b i × ˙ l i = F b · ˙ M i I b i × ˙ A i
20 19 mpteq2dv l = A b D F b · ˙ M i I b i × ˙ l i = b D F b · ˙ M i I b i × ˙ A i
21 20 oveq2d l = A S b D F b · ˙ M i I b i × ˙ l i = S b D F b · ˙ M i I b i × ˙ A i
22 eqid S 𝑠 K I = S 𝑠 K I
23 eqid mulGrp S 𝑠 K I = mulGrp S 𝑠 K I
24 eqid mulGrp S 𝑠 K I = mulGrp S 𝑠 K I
25 eqid S 𝑠 K I = S 𝑠 K I
26 eqid x R K I × x = x R K I × x
27 eqid x I a K I a x = x I a K I a x
28 1 2 3 5 6 4 22 23 24 25 26 27 10 11 12 13 evlsvval φ Q F = S 𝑠 K I b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
29 sneq x = F b x = F b
30 29 xpeq2d x = F b K I × x = K I × F b
31 eqid Base U = Base U
32 2 31 3 5 13 mplelf φ F : D Base U
33 4 subrgbas R SubRing S R = Base U
34 12 33 syl φ R = Base U
35 34 feq3d φ F : D R F : D Base U
36 32 35 mpbird φ F : D R
37 36 ffvelcdmda φ b D F b R
38 ovex K I V
39 snex F b V
40 38 39 xpex K I × F b V
41 40 a1i φ b D K I × F b V
42 26 30 37 41 fvmptd3 φ b D x R K I × x F b = K I × F b
43 5 psrbagf b D b : I 0
44 43 adantl φ b D b : I 0
45 44 ffnd φ b D b Fn I
46 38 mptex a K I a x V
47 46 27 fnmpti x I a K I a x Fn I
48 47 a1i φ b D x I a K I a x Fn I
49 10 adantr φ b D I V
50 inidm I I = I
51 eqidd φ b D i I b i = b i
52 fveq2 x = i a x = a i
53 52 mpteq2dv x = i a K I a x = a K I a i
54 simpr φ b D i I i I
55 eqid Base S 𝑠 K I = Base S 𝑠 K I
56 11 ad2antrr φ b D i I S CRing
57 ovexd φ b D i I K I V
58 elmapi a K I a : I K
59 58 ffvelcdmda a K I i I a i K
60 59 ancoms i I a K I a i K
61 60 adantll φ b D i I a K I a i K
62 61 fmpttd φ b D i I a K I a i : K I K
63 22 6 55 56 57 62 pwselbasr φ b D i I a K I a i Base S 𝑠 K I
64 27 53 54 63 fvmptd3 φ b D i I x I a K I a x i = a K I a i
65 45 48 49 49 50 51 64 offval φ b D b mulGrp S 𝑠 K I f x I a K I a x = i I b i mulGrp S 𝑠 K I a K I a i
66 23 55 mgpbas Base S 𝑠 K I = Base mulGrp S 𝑠 K I
67 11 crngringd φ S Ring
68 ovexd φ K I V
69 22 pwsring S Ring K I V S 𝑠 K I Ring
70 67 68 69 syl2anc φ S 𝑠 K I Ring
71 23 ringmgp S 𝑠 K I Ring mulGrp S 𝑠 K I Mnd
72 70 71 syl φ mulGrp S 𝑠 K I Mnd
73 72 ad2antrr φ b D i I mulGrp S 𝑠 K I Mnd
74 44 ffvelcdmda φ b D i I b i 0
75 66 24 73 74 63 mulgnn0cld φ b D i I b i mulGrp S 𝑠 K I a K I a i Base S 𝑠 K I
76 22 6 55 56 57 75 pwselbas φ b D i I b i mulGrp S 𝑠 K I a K I a i : K I K
77 76 ffnd φ b D i I b i mulGrp S 𝑠 K I a K I a i Fn K I
78 ovex b i × ˙ m i V
79 eqid m K I b i × ˙ m i = m K I b i × ˙ m i
80 78 79 fnmpti m K I b i × ˙ m i Fn K I
81 80 a1i φ b D i I m K I b i × ˙ m i Fn K I
82 eqid a K I a i = a K I a i
83 fveq1 a = p a i = p i
84 simpr φ b D i I p K I p K I
85 fvexd φ b D i I p K I p i V
86 82 83 84 85 fvmptd3 φ b D i I p K I a K I a i p = p i
87 86 oveq2d φ b D i I p K I b i × ˙ a K I a i p = b i × ˙ p i
88 67 ad3antrrr φ b D i I p K I S Ring
89 ovexd φ b D i I p K I K I V
90 74 adantr φ b D i I p K I b i 0
91 63 adantr φ b D i I p K I a K I a i Base S 𝑠 K I
92 22 55 23 7 24 8 88 89 90 91 84 pwsexpg φ b D i I p K I b i mulGrp S 𝑠 K I a K I a i p = b i × ˙ a K I a i p
93 fveq1 m = p m i = p i
94 93 oveq2d m = p b i × ˙ m i = b i × ˙ p i
95 ovexd φ b D i I p K I b i × ˙ p i V
96 79 94 84 95 fvmptd3 φ b D i I p K I m K I b i × ˙ m i p = b i × ˙ p i
97 87 92 96 3eqtr4d φ b D i I p K I b i mulGrp S 𝑠 K I a K I a i p = m K I b i × ˙ m i p
98 77 81 97 eqfnfvd φ b D i I b i mulGrp S 𝑠 K I a K I a i = m K I b i × ˙ m i
99 98 mpteq2dva φ b D i I b i mulGrp S 𝑠 K I a K I a i = i I m K I b i × ˙ m i
100 65 99 eqtrd φ b D b mulGrp S 𝑠 K I f x I a K I a x = i I m K I b i × ˙ m i
101 100 oveq2d φ b D mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = mulGrp S 𝑠 K I i I m K I b i × ˙ m i
102 eqid 1 S 𝑠 K I = 1 S 𝑠 K I
103 ovexd φ b D K I V
104 11 adantr φ b D S CRing
105 7 6 mgpbas K = Base M
106 7 ringmgp S Ring M Mnd
107 67 106 syl φ M Mnd
108 107 ad2antrr φ b D m K I i I M Mnd
109 74 adantrl φ b D m K I i I b i 0
110 elmapi m K I m : I K
111 110 ffvelcdmda m K I i I m i K
112 111 adantl φ b D m K I i I m i K
113 105 8 108 109 112 mulgnn0cld φ b D m K I i I b i × ˙ m i K
114 49 mptexd φ b D i I m K I b i × ˙ m i V
115 fvexd φ b D 1 S 𝑠 K I V
116 funmpt Fun i I m K I b i × ˙ m i
117 116 a1i φ b D Fun i I m K I b i × ˙ m i
118 5 psrbagfsupp b D finSupp 0 b
119 118 adantl φ b D finSupp 0 b
120 ssidd φ b D b supp 0 b supp 0
121 0cnd φ b D 0
122 44 120 49 121 suppssr φ b D i I supp 0 b b i = 0
123 122 oveq1d φ b D i I supp 0 b b i × ˙ m i = 0 × ˙ m i
124 123 adantr φ b D i I supp 0 b m K I b i × ˙ m i = 0 × ˙ m i
125 eldifi i I supp 0 b i I
126 125 111 sylan2 m K I i I supp 0 b m i K
127 126 ancoms i I supp 0 b m K I m i K
128 127 adantll φ b D i I supp 0 b m K I m i K
129 eqid 1 S = 1 S
130 7 129 ringidval 1 S = 0 M
131 105 130 8 mulg0 m i K 0 × ˙ m i = 1 S
132 128 131 syl φ b D i I supp 0 b m K I 0 × ˙ m i = 1 S
133 124 132 eqtrd φ b D i I supp 0 b m K I b i × ˙ m i = 1 S
134 133 mpteq2dva φ b D i I supp 0 b m K I b i × ˙ m i = m K I 1 S
135 fconstmpt K I × 1 S = m K I 1 S
136 22 129 pws1 S Ring K I V K I × 1 S = 1 S 𝑠 K I
137 67 68 136 syl2anc φ K I × 1 S = 1 S 𝑠 K I
138 137 ad2antrr φ b D i I supp 0 b K I × 1 S = 1 S 𝑠 K I
139 135 138 eqtr3id φ b D i I supp 0 b m K I 1 S = 1 S 𝑠 K I
140 134 139 eqtrd φ b D i I supp 0 b m K I b i × ˙ m i = 1 S 𝑠 K I
141 140 49 suppss2 φ b D i I m K I b i × ˙ m i supp 1 S 𝑠 K I b supp 0
142 114 115 117 119 141 fsuppsssuppgd φ b D finSupp 1 S 𝑠 K I i I m K I b i × ˙ m i
143 22 6 102 23 7 103 49 104 113 142 pwsgprod φ b D mulGrp S 𝑠 K I i I m K I b i × ˙ m i = m K I M i I b i × ˙ m i
144 101 143 eqtrd φ b D mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = m K I M i I b i × ˙ m i
145 42 144 oveq12d φ b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = K I × F b S 𝑠 K I m K I M i I b i × ˙ m i
146 6 subrgss R SubRing S R K
147 33 146 eqsstrrd R SubRing S Base U K
148 12 147 syl φ Base U K
149 32 148 fssd φ F : D K
150 149 ffvelcdmda φ b D F b K
151 fconst6g F b K K I × F b : K I K
152 150 151 syl φ b D K I × F b : K I K
153 22 6 55 104 103 152 pwselbasr φ b D K I × F b Base S 𝑠 K I
154 10 ad2antrr φ b D m K I I V
155 11 ad2antrr φ b D m K I S CRing
156 simpr φ b D m K I m K I
157 simplr φ b D m K I b D
158 5 6 7 8 154 155 156 157 evlsvvvallem φ b D m K I M i I b i × ˙ m i K
159 158 fmpttd φ b D m K I M i I b i × ˙ m i : K I K
160 22 6 55 104 103 159 pwselbasr φ b D m K I M i I b i × ˙ m i Base S 𝑠 K I
161 22 55 104 103 153 160 9 25 pwsmulrval φ b D K I × F b S 𝑠 K I m K I M i I b i × ˙ m i = K I × F b · ˙ f m K I M i I b i × ˙ m i
162 152 ffnd φ b D K I × F b Fn K I
163 ovex M i I b i × ˙ m i V
164 eqid m K I M i I b i × ˙ m i = m K I M i I b i × ˙ m i
165 163 164 fnmpti m K I M i I b i × ˙ m i Fn K I
166 165 a1i φ b D m K I M i I b i × ˙ m i Fn K I
167 inidm K I K I = K I
168 fvex F b V
169 168 fvconst2 l K I K I × F b l = F b
170 169 adantl φ b D l K I K I × F b l = F b
171 fveq1 m = l m i = l i
172 171 oveq2d m = l b i × ˙ m i = b i × ˙ l i
173 172 mpteq2dv m = l i I b i × ˙ m i = i I b i × ˙ l i
174 173 oveq2d m = l M i I b i × ˙ m i = M i I b i × ˙ l i
175 simpr φ b D l K I l K I
176 10 ad2antrr φ b D l K I I V
177 11 ad2antrr φ b D l K I S CRing
178 simplr φ b D l K I b D
179 5 6 7 8 176 177 175 178 evlsvvvallem φ b D l K I M i I b i × ˙ l i K
180 164 174 175 179 fvmptd3 φ b D l K I m K I M i I b i × ˙ m i l = M i I b i × ˙ l i
181 162 166 103 103 167 170 180 offval φ b D K I × F b · ˙ f m K I M i I b i × ˙ m i = l K I F b · ˙ M i I b i × ˙ l i
182 145 161 181 3eqtrd φ b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = l K I F b · ˙ M i I b i × ˙ l i
183 182 mpteq2dva φ b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = b D l K I F b · ˙ M i I b i × ˙ l i
184 183 oveq2d φ S 𝑠 K I b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = S 𝑠 K I b D l K I F b · ˙ M i I b i × ˙ l i
185 eqid 0 S 𝑠 K I = 0 S 𝑠 K I
186 ovexd φ 0 I V
187 5 186 rabexd φ D V
188 67 ringcmnd φ S CMnd
189 67 adantr φ l K I b D S Ring
190 150 adantrl φ l K I b D F b K
191 simpl φ l K I b D φ
192 simprr φ l K I b D b D
193 simprl φ l K I b D l K I
194 191 192 193 179 syl21anc φ l K I b D M i I b i × ˙ l i K
195 6 9 189 190 194 ringcld φ l K I b D F b · ˙ M i I b i × ˙ l i K
196 187 mptexd φ b D l K I F b · ˙ M i I b i × ˙ l i V
197 fvexd φ 0 S 𝑠 K I V
198 funmpt Fun b D l K I F b · ˙ M i I b i × ˙ l i
199 198 a1i φ Fun b D l K I F b · ˙ M i I b i × ˙ l i
200 eqid 0 U = 0 U
201 4 ovexi U V
202 201 a1i φ U V
203 2 3 200 13 202 mplelsfi φ finSupp 0 U F
204 ssidd φ F supp 0 U F supp 0 U
205 fvexd φ 0 U V
206 149 204 187 205 suppssr φ b D supp 0 U F F b = 0 U
207 eqid 0 S = 0 S
208 4 207 subrg0 R SubRing S 0 S = 0 U
209 12 208 syl φ 0 S = 0 U
210 209 adantr φ b D supp 0 U F 0 S = 0 U
211 206 210 eqtr4d φ b D supp 0 U F F b = 0 S
212 211 adantr φ b D supp 0 U F l K I F b = 0 S
213 212 oveq1d φ b D supp 0 U F l K I F b · ˙ M i I b i × ˙ l i = 0 S · ˙ M i I b i × ˙ l i
214 67 ad2antrr φ b D supp 0 U F l K I S Ring
215 eldifi b D supp 0 U F b D
216 215 179 sylanl2 φ b D supp 0 U F l K I M i I b i × ˙ l i K
217 6 9 207 214 216 ringlzd φ b D supp 0 U F l K I 0 S · ˙ M i I b i × ˙ l i = 0 S
218 213 217 eqtrd φ b D supp 0 U F l K I F b · ˙ M i I b i × ˙ l i = 0 S
219 218 mpteq2dva φ b D supp 0 U F l K I F b · ˙ M i I b i × ˙ l i = l K I 0 S
220 fconstmpt K I × 0 S = l K I 0 S
221 188 cmnmndd φ S Mnd
222 22 207 pws0g S Mnd K I V K I × 0 S = 0 S 𝑠 K I
223 221 68 222 syl2anc φ K I × 0 S = 0 S 𝑠 K I
224 220 223 eqtr3id φ l K I 0 S = 0 S 𝑠 K I
225 224 adantr φ b D supp 0 U F l K I 0 S = 0 S 𝑠 K I
226 219 225 eqtrd φ b D supp 0 U F l K I F b · ˙ M i I b i × ˙ l i = 0 S 𝑠 K I
227 226 187 suppss2 φ b D l K I F b · ˙ M i I b i × ˙ l i supp 0 S 𝑠 K I F supp 0 U
228 196 197 199 203 227 fsuppsssuppgd φ finSupp 0 S 𝑠 K I b D l K I F b · ˙ M i I b i × ˙ l i
229 22 6 185 68 187 188 195 228 pwsgsum φ S 𝑠 K I b D l K I F b · ˙ M i I b i × ˙ l i = l K I S b D F b · ˙ M i I b i × ˙ l i
230 28 184 229 3eqtrd φ Q F = l K I S b D F b · ˙ M i I b i × ˙ l i
231 ovexd φ S b D F b · ˙ M i I b i × ˙ A i V
232 21 230 14 231 fvmptd4 φ Q F A = S b D F b · ˙ M i I b i × ˙ A i