Metamath Proof Explorer


Theorem evlsvvvallem

Description: Lemma for evlsvvval akin to psrbagev2 . (Contributed by SN, 6-Mar-2025)

Ref Expression
Hypotheses evlsvvvallem.d D = h 0 I | h -1 Fin
evlsvvvallem.k K = Base S
evlsvvvallem.m M = mulGrp S
evlsvvvallem.w × ˙ = M
evlsvvvallem.i φ I V
evlsvvvallem.s φ S CRing
evlsvvvallem.a φ A K I
evlsvvvallem.b φ B D
Assertion evlsvvvallem φ M v I B v × ˙ A v K

Proof

Step Hyp Ref Expression
1 evlsvvvallem.d D = h 0 I | h -1 Fin
2 evlsvvvallem.k K = Base S
3 evlsvvvallem.m M = mulGrp S
4 evlsvvvallem.w × ˙ = M
5 evlsvvvallem.i φ I V
6 evlsvvvallem.s φ S CRing
7 evlsvvvallem.a φ A K I
8 evlsvvvallem.b φ B D
9 3 2 mgpbas K = Base M
10 eqid 1 S = 1 S
11 3 10 ringidval 1 S = 0 M
12 3 crngmgp S CRing M CMnd
13 6 12 syl φ M CMnd
14 6 crngringd φ S Ring
15 3 ringmgp S Ring M Mnd
16 14 15 syl φ M Mnd
17 16 adantr φ v I M Mnd
18 1 psrbagf B D B : I 0
19 8 18 syl φ B : I 0
20 19 ffvelcdmda φ v I B v 0
21 elmapi A K I A : I K
22 7 21 syl φ A : I K
23 22 ffvelcdmda φ v I A v K
24 9 4 17 20 23 mulgnn0cld φ v I B v × ˙ A v K
25 24 fmpttd φ v I B v × ˙ A v : I K
26 5 mptexd φ v I B v × ˙ A v V
27 fvexd φ 1 S V
28 25 ffund φ Fun v I B v × ˙ A v
29 1 psrbagfsupp B D finSupp 0 B
30 8 29 syl φ finSupp 0 B
31 ssidd φ B supp 0 B supp 0
32 0zd φ 0
33 19 31 5 32 suppssr φ v I supp 0 B B v = 0
34 33 oveq1d φ v I supp 0 B B v × ˙ A v = 0 × ˙ A v
35 eldifi v I supp 0 B v I
36 35 23 sylan2 φ v I supp 0 B A v K
37 9 11 4 mulg0 A v K 0 × ˙ A v = 1 S
38 36 37 syl φ v I supp 0 B 0 × ˙ A v = 1 S
39 34 38 eqtrd φ v I supp 0 B B v × ˙ A v = 1 S
40 39 5 suppss2 φ v I B v × ˙ A v supp 1 S B supp 0
41 26 27 28 30 40 fsuppsssuppgd φ finSupp 1 S v I B v × ˙ A v
42 9 11 13 5 25 41 gsumcl φ M v I B v × ˙ A v K