Metamath Proof Explorer


Theorem evlsvvvallem2

Description: Lemma for theorems using evlsvvval . (Contributed by SN, 8-Mar-2025)

Ref Expression
Hypotheses evlsvvvallem2.d D = h 0 I | h -1 Fin
evlsvvvallem2.p P = I mPoly U
evlsvvvallem2.u U = S 𝑠 R
evlsvvvallem2.b B = Base P
evlsvvvallem2.k K = Base S
evlsvvvallem2.m M = mulGrp S
evlsvvvallem2.w × ˙ = M
evlsvvvallem2.x · ˙ = S
evlsvvvallem2.i φ I V
evlsvvvallem2.s φ S CRing
evlsvvvallem2.r φ R SubRing S
evlsvvvallem2.f φ F B
evlsvvvallem2.a φ A K I
Assertion evlsvvvallem2 φ finSupp 0 S b D F b · ˙ M v I b v × ˙ A v

Proof

Step Hyp Ref Expression
1 evlsvvvallem2.d D = h 0 I | h -1 Fin
2 evlsvvvallem2.p P = I mPoly U
3 evlsvvvallem2.u U = S 𝑠 R
4 evlsvvvallem2.b B = Base P
5 evlsvvvallem2.k K = Base S
6 evlsvvvallem2.m M = mulGrp S
7 evlsvvvallem2.w × ˙ = M
8 evlsvvvallem2.x · ˙ = S
9 evlsvvvallem2.i φ I V
10 evlsvvvallem2.s φ S CRing
11 evlsvvvallem2.r φ R SubRing S
12 evlsvvvallem2.f φ F B
13 evlsvvvallem2.a φ A K I
14 ovex 0 I V
15 1 14 rabex2 D V
16 15 mptex b D F b · ˙ M v I b v × ˙ A v V
17 16 a1i φ b D F b · ˙ M v I b v × ˙ A v V
18 fvexd φ 0 S V
19 funmpt Fun b D F b · ˙ M v I b v × ˙ A v
20 19 a1i φ Fun b D F b · ˙ M v I b v × ˙ A v
21 eqid 0 U = 0 U
22 3 ovexi U V
23 22 a1i φ U V
24 2 4 21 12 23 mplelsfi φ finSupp 0 U F
25 eqid Base U = Base U
26 2 25 4 1 12 mplelf φ F : D Base U
27 ssidd φ F supp 0 U F supp 0 U
28 fvexd φ 0 U V
29 26 27 12 28 suppssrg φ b D supp 0 U F F b = 0 U
30 eqid 0 S = 0 S
31 3 30 subrg0 R SubRing S 0 S = 0 U
32 11 31 syl φ 0 S = 0 U
33 32 eqcomd φ 0 U = 0 S
34 33 adantr φ b D supp 0 U F 0 U = 0 S
35 29 34 eqtrd φ b D supp 0 U F F b = 0 S
36 35 oveq1d φ b D supp 0 U F F b · ˙ M v I b v × ˙ A v = 0 S · ˙ M v I b v × ˙ A v
37 10 crngringd φ S Ring
38 37 adantr φ b D supp 0 U F S Ring
39 eldifi b D supp 0 U F b D
40 9 adantr φ b D I V
41 10 adantr φ b D S CRing
42 13 adantr φ b D A K I
43 simpr φ b D b D
44 1 5 6 7 40 41 42 43 evlsvvvallem φ b D M v I b v × ˙ A v K
45 39 44 sylan2 φ b D supp 0 U F M v I b v × ˙ A v K
46 5 8 30 38 45 ringlzd φ b D supp 0 U F 0 S · ˙ M v I b v × ˙ A v = 0 S
47 36 46 eqtrd φ b D supp 0 U F F b · ˙ M v I b v × ˙ A v = 0 S
48 15 a1i φ D V
49 47 48 suppss2 φ b D F b · ˙ M v I b v × ˙ A v supp 0 S F supp 0 U
50 17 18 20 24 49 fsuppsssuppgd φ finSupp 0 S b D F b · ˙ M v I b v × ˙ A v