Step |
Hyp |
Ref |
Expression |
1 |
|
evlsvvvallem2.d |
|
2 |
|
evlsvvvallem2.p |
|
3 |
|
evlsvvvallem2.u |
|
4 |
|
evlsvvvallem2.b |
|
5 |
|
evlsvvvallem2.k |
|
6 |
|
evlsvvvallem2.m |
|
7 |
|
evlsvvvallem2.w |
|
8 |
|
evlsvvvallem2.x |
|
9 |
|
evlsvvvallem2.i |
|
10 |
|
evlsvvvallem2.s |
|
11 |
|
evlsvvvallem2.r |
|
12 |
|
evlsvvvallem2.f |
|
13 |
|
evlsvvvallem2.a |
|
14 |
|
ovex |
|
15 |
1 14
|
rabex2 |
|
16 |
15
|
mptex |
|
17 |
16
|
a1i |
|
18 |
|
fvexd |
|
19 |
|
funmpt |
|
20 |
19
|
a1i |
|
21 |
|
eqid |
|
22 |
3
|
ovexi |
|
23 |
22
|
a1i |
|
24 |
2 4 21 12 23
|
mplelsfi |
|
25 |
|
eqid |
|
26 |
2 25 4 1 12
|
mplelf |
|
27 |
|
ssidd |
|
28 |
|
fvexd |
|
29 |
26 27 12 28
|
suppssrg |
|
30 |
|
eqid |
|
31 |
3 30
|
subrg0 |
|
32 |
11 31
|
syl |
|
33 |
32
|
eqcomd |
|
34 |
33
|
adantr |
|
35 |
29 34
|
eqtrd |
|
36 |
35
|
oveq1d |
|
37 |
10
|
crngringd |
|
38 |
37
|
adantr |
|
39 |
|
eldifi |
|
40 |
9
|
adantr |
|
41 |
10
|
adantr |
|
42 |
13
|
adantr |
|
43 |
|
simpr |
|
44 |
1 5 6 7 40 41 42 43
|
evlsvvvallem |
|
45 |
39 44
|
sylan2 |
|
46 |
5 8 30 38 45
|
ringlzd |
|
47 |
36 46
|
eqtrd |
|
48 |
15
|
a1i |
|
49 |
47 48
|
suppss2 |
|
50 |
17 18 20 24 49
|
fsuppsssuppgd |
|