Metamath Proof Explorer


Theorem evlval

Description: Value of the simple/same ring evaluation map. (Contributed by Stefan O'Rear, 19-Mar-2015) (Revised by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses evlval.q Q = I eval R
evlval.b B = Base R
Assertion evlval Q = I evalSub R B

Proof

Step Hyp Ref Expression
1 evlval.q Q = I eval R
2 evlval.b B = Base R
3 oveq12 i = I r = R i evalSub r = I evalSub R
4 fveq2 r = R Base r = Base R
5 4 2 eqtr4di r = R Base r = B
6 5 adantl i = I r = R Base r = B
7 3 6 fveq12d i = I r = R i evalSub r Base r = I evalSub R B
8 df-evl eval = i V , r V i evalSub r Base r
9 fvex I evalSub R B V
10 7 8 9 ovmpoa I V R V I eval R = I evalSub R B
11 8 mpondm0 ¬ I V R V I eval R =
12 0fv B =
13 11 12 eqtr4di ¬ I V R V I eval R = B
14 reldmevls Rel dom evalSub
15 14 ovprc ¬ I V R V I evalSub R =
16 15 fveq1d ¬ I V R V I evalSub R B = B
17 13 16 eqtr4d ¬ I V R V I eval R = I evalSub R B
18 10 17 pm2.61i I eval R = I evalSub R B
19 1 18 eqtri Q = I evalSub R B