Metamath Proof Explorer


Theorem evlvar

Description: Simple polynomial evaluation maps variables to projections. (Contributed by AV, 12-Sep-2019)

Ref Expression
Hypotheses evlvar.q Q = I eval S
evlvar.v V = I mVar S
evlvar.b B = Base S
evlvar.i φ I W
evlvar.s φ S CRing
evlvar.x φ X I
Assertion evlvar φ Q V X = g B I g X

Proof

Step Hyp Ref Expression
1 evlvar.q Q = I eval S
2 evlvar.v V = I mVar S
3 evlvar.b B = Base S
4 evlvar.i φ I W
5 evlvar.s φ S CRing
6 evlvar.x φ X I
7 eqid I evalSub S B = I evalSub S B
8 eqid I mVar S 𝑠 B = I mVar S 𝑠 B
9 eqid S 𝑠 B = S 𝑠 B
10 crngring S CRing S Ring
11 3 subrgid S Ring B SubRing S
12 5 10 11 3syl φ B SubRing S
13 7 1 8 9 3 4 5 12 6 evlsvarsrng φ I evalSub S B I mVar S 𝑠 B X = Q I mVar S 𝑠 B X
14 7 8 9 3 4 5 12 6 evlsvar φ I evalSub S B I mVar S 𝑠 B X = g B I g X
15 2 4 12 9 subrgmvr φ V = I mVar S 𝑠 B
16 15 fveq1d φ V X = I mVar S 𝑠 B X
17 16 eqcomd φ I mVar S 𝑠 B X = V X
18 17 fveq2d φ Q I mVar S 𝑠 B X = Q V X
19 13 14 18 3eqtr3rd φ Q V X = g B I g X