Metamath Proof Explorer


Theorem evlvvval

Description: Give a formula for the evaluation of a polynomial given assignments from variables to values. (Contributed by SN, 5-Mar-2025)

Ref Expression
Hypotheses evlvvval.q Q = I eval R
evlvvval.p P = I mPoly R
evlvvval.b B = Base P
evlvvval.d D = h 0 I | h -1 Fin
evlvvval.k K = Base R
evlvvval.m M = mulGrp R
evlvvval.w × ˙ = M
evlvvval.x · ˙ = R
evlvvval.i φ I V
evlvvval.r φ R CRing
evlvvval.f φ F B
evlvvval.a φ A K I
Assertion evlvvval φ Q F A = R b D F b · ˙ M i I b i × ˙ A i

Proof

Step Hyp Ref Expression
1 evlvvval.q Q = I eval R
2 evlvvval.p P = I mPoly R
3 evlvvval.b B = Base P
4 evlvvval.d D = h 0 I | h -1 Fin
5 evlvvval.k K = Base R
6 evlvvval.m M = mulGrp R
7 evlvvval.w × ˙ = M
8 evlvvval.x · ˙ = R
9 evlvvval.i φ I V
10 evlvvval.r φ R CRing
11 evlvvval.f φ F B
12 evlvvval.a φ A K I
13 eqid I evalSub R Base R = I evalSub R Base R
14 eqid I mPoly R 𝑠 Base R = I mPoly R 𝑠 Base R
15 eqid R 𝑠 Base R = R 𝑠 Base R
16 eqid Base I mPoly R 𝑠 Base R = Base I mPoly R 𝑠 Base R
17 10 crngringd φ R Ring
18 eqid Base R = Base R
19 18 subrgid R Ring Base R SubRing R
20 17 19 syl φ Base R SubRing R
21 18 ressid R CRing R 𝑠 Base R = R
22 10 21 syl φ R 𝑠 Base R = R
23 22 oveq2d φ I mPoly R 𝑠 Base R = I mPoly R
24 23 2 eqtr4di φ I mPoly R 𝑠 Base R = P
25 24 fveq2d φ Base I mPoly R 𝑠 Base R = Base P
26 25 3 eqtr4di φ Base I mPoly R 𝑠 Base R = B
27 11 26 eleqtrrd φ F Base I mPoly R 𝑠 Base R
28 13 1 14 15 16 9 10 20 27 evlsevl φ I evalSub R Base R F = Q F
29 28 fveq1d φ I evalSub R Base R F A = Q F A
30 13 14 16 15 4 5 6 7 8 9 10 20 27 12 evlsvvval φ I evalSub R Base R F A = R b D F b · ˙ M i I b i × ˙ A i
31 29 30 eqtr3d φ Q F A = R b D F b · ˙ M i I b i × ˙ A i