Metamath Proof Explorer


Theorem evlvvvallem

Description: Lemma for theorems using evlvvval . Version of evlsvvvallem2 using df-evl . (Contributed by SN, 11-Mar-2025)

Ref Expression
Hypotheses evlvvvallem.d D = h 0 I | h -1 Fin
evlvvvallem.p P = I mPoly R
evlvvvallem.b B = Base P
evlvvvallem.k K = Base R
evlvvvallem.m M = mulGrp R
evlvvvallem.w × ˙ = M
evlvvvallem.x · ˙ = R
evlvvvallem.i φ I V
evlvvvallem.r φ R CRing
evlvvvallem.f φ F B
evlvvvallem.a φ A K I
Assertion evlvvvallem φ finSupp 0 R b D F b · ˙ M v I b v × ˙ A v

Proof

Step Hyp Ref Expression
1 evlvvvallem.d D = h 0 I | h -1 Fin
2 evlvvvallem.p P = I mPoly R
3 evlvvvallem.b B = Base P
4 evlvvvallem.k K = Base R
5 evlvvvallem.m M = mulGrp R
6 evlvvvallem.w × ˙ = M
7 evlvvvallem.x · ˙ = R
8 evlvvvallem.i φ I V
9 evlvvvallem.r φ R CRing
10 evlvvvallem.f φ F B
11 evlvvvallem.a φ A K I
12 eqid I mPoly R 𝑠 K = I mPoly R 𝑠 K
13 eqid R 𝑠 K = R 𝑠 K
14 eqid Base I mPoly R 𝑠 K = Base I mPoly R 𝑠 K
15 9 crngringd φ R Ring
16 4 subrgid R Ring K SubRing R
17 15 16 syl φ K SubRing R
18 4 ressid R CRing R 𝑠 K = R
19 9 18 syl φ R 𝑠 K = R
20 19 oveq2d φ I mPoly R 𝑠 K = I mPoly R
21 20 2 eqtr4di φ I mPoly R 𝑠 K = P
22 21 fveq2d φ Base I mPoly R 𝑠 K = Base P
23 22 3 eqtr4di φ Base I mPoly R 𝑠 K = B
24 10 23 eleqtrrd φ F Base I mPoly R 𝑠 K
25 1 12 13 14 4 5 6 7 8 9 17 24 11 evlsvvvallem2 φ finSupp 0 R b D F b · ˙ M v I b v × ˙ A v