Metamath Proof Explorer


Theorem evpmss

Description: Even permutations are permutations. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses evpmss.s S = SymGrp D
evpmss.p P = Base S
Assertion evpmss pmEven D P

Proof

Step Hyp Ref Expression
1 evpmss.s S = SymGrp D
2 evpmss.p P = Base S
3 fveq2 d = D pmSgn d = pmSgn D
4 3 cnveqd d = D pmSgn d -1 = pmSgn D -1
5 4 imaeq1d d = D pmSgn d -1 1 = pmSgn D -1 1
6 df-evpm pmEven = d V pmSgn d -1 1
7 fvex pmSgn D V
8 7 cnvex pmSgn D -1 V
9 8 imaex pmSgn D -1 1 V
10 5 6 9 fvmpt D V pmEven D = pmSgn D -1 1
11 cnvimass pmSgn D -1 1 dom pmSgn D
12 eqid pmSgn D = pmSgn D
13 eqid S 𝑠 dom pmSgn D = S 𝑠 dom pmSgn D
14 eqid mulGrp fld 𝑠 1 1 = mulGrp fld 𝑠 1 1
15 1 12 13 14 psgnghm D V pmSgn D S 𝑠 dom pmSgn D GrpHom mulGrp fld 𝑠 1 1
16 eqid Base S 𝑠 dom pmSgn D = Base S 𝑠 dom pmSgn D
17 eqid Base mulGrp fld 𝑠 1 1 = Base mulGrp fld 𝑠 1 1
18 16 17 ghmf pmSgn D S 𝑠 dom pmSgn D GrpHom mulGrp fld 𝑠 1 1 pmSgn D : Base S 𝑠 dom pmSgn D Base mulGrp fld 𝑠 1 1
19 fdm pmSgn D : Base S 𝑠 dom pmSgn D Base mulGrp fld 𝑠 1 1 dom pmSgn D = Base S 𝑠 dom pmSgn D
20 15 18 19 3syl D V dom pmSgn D = Base S 𝑠 dom pmSgn D
21 13 2 ressbasss Base S 𝑠 dom pmSgn D P
22 20 21 eqsstrdi D V dom pmSgn D P
23 11 22 sstrid D V pmSgn D -1 1 P
24 10 23 eqsstrd D V pmEven D P
25 fvprc ¬ D V pmEven D =
26 0ss P
27 25 26 eqsstrdi ¬ D V pmEven D P
28 24 27 pm2.61i pmEven D P