Step |
Hyp |
Ref |
Expression |
1 |
|
bndth.1 |
|
2 |
|
bndth.2 |
|
3 |
|
bndth.3 |
|
4 |
|
bndth.4 |
|
5 |
|
evth.5 |
|
6 |
3
|
adantr |
|
7 |
|
cmptop |
|
8 |
6 7
|
syl |
|
9 |
1
|
toptopon |
|
10 |
8 9
|
sylib |
|
11 |
|
eqid |
|
12 |
11
|
cnfldtopon |
|
13 |
12
|
a1i |
|
14 |
|
1cnd |
|
15 |
10 13 14
|
cnmptc |
|
16 |
|
uniretop |
|
17 |
2
|
unieqi |
|
18 |
16 17
|
eqtr4i |
|
19 |
1 18
|
cnf |
|
20 |
4 19
|
syl |
|
21 |
20
|
frnd |
|
22 |
20
|
fdmd |
|
23 |
22 5
|
eqnetrd |
|
24 |
|
dm0rn0 |
|
25 |
24
|
necon3bii |
|
26 |
23 25
|
sylib |
|
27 |
1 2 3 4
|
bndth |
|
28 |
20
|
ffnd |
|
29 |
|
breq1 |
|
30 |
29
|
ralrn |
|
31 |
28 30
|
syl |
|
32 |
31
|
rexbidv |
|
33 |
27 32
|
mpbird |
|
34 |
21 26 33
|
3jca |
|
35 |
|
suprcl |
|
36 |
34 35
|
syl |
|
37 |
36
|
recnd |
|
38 |
37
|
adantr |
|
39 |
10 13 38
|
cnmptc |
|
40 |
20
|
feqmptd |
|
41 |
11
|
cnfldtop |
|
42 |
|
cnrest2r |
|
43 |
41 42
|
ax-mp |
|
44 |
11
|
tgioo2 |
|
45 |
2 44
|
eqtri |
|
46 |
45
|
oveq2i |
|
47 |
4 46
|
eleqtrdi |
|
48 |
43 47
|
sselid |
|
49 |
40 48
|
eqeltrrd |
|
50 |
49
|
adantr |
|
51 |
11
|
subcn |
|
52 |
51
|
a1i |
|
53 |
10 39 50 52
|
cnmpt12f |
|
54 |
36
|
ad2antrr |
|
55 |
|
ffvelrn |
|
56 |
55
|
adantll |
|
57 |
|
eldifsn |
|
58 |
56 57
|
sylib |
|
59 |
58
|
simpld |
|
60 |
54 59
|
resubcld |
|
61 |
60
|
recnd |
|
62 |
54
|
recnd |
|
63 |
59
|
recnd |
|
64 |
58
|
simprd |
|
65 |
64
|
necomd |
|
66 |
62 63 65
|
subne0d |
|
67 |
|
eldifsn |
|
68 |
61 66 67
|
sylanbrc |
|
69 |
68
|
fmpttd |
|
70 |
69
|
frnd |
|
71 |
|
difssd |
|
72 |
|
cnrest2 |
|
73 |
13 70 71 72
|
syl3anc |
|
74 |
53 73
|
mpbid |
|
75 |
|
eqid |
|
76 |
11 75
|
divcn |
|
77 |
76
|
a1i |
|
78 |
10 15 74 77
|
cnmpt12f |
|
79 |
60 66
|
rereccld |
|
80 |
79
|
fmpttd |
|
81 |
80
|
frnd |
|
82 |
|
ax-resscn |
|
83 |
82
|
a1i |
|
84 |
|
cnrest2 |
|
85 |
13 81 83 84
|
syl3anc |
|
86 |
78 85
|
mpbid |
|
87 |
86 46
|
eleqtrrdi |
|
88 |
1 2 6 87
|
bndth |
|
89 |
36
|
ad2antrr |
|
90 |
|
simpr |
|
91 |
|
1re |
|
92 |
|
ifcl |
|
93 |
90 91 92
|
sylancl |
|
94 |
|
0red |
|
95 |
91
|
a1i |
|
96 |
|
0lt1 |
|
97 |
96
|
a1i |
|
98 |
|
max1 |
|
99 |
91 90 98
|
sylancr |
|
100 |
94 95 93 97 99
|
ltletrd |
|
101 |
100
|
gt0ne0d |
|
102 |
93 101
|
rereccld |
|
103 |
93 100
|
recgt0d |
|
104 |
102 103
|
elrpd |
|
105 |
89 104
|
ltsubrpd |
|
106 |
89 102
|
resubcld |
|
107 |
106 89
|
ltnled |
|
108 |
105 107
|
mpbid |
|
109 |
|
simprl |
|
110 |
|
max2 |
|
111 |
91 109 110
|
sylancr |
|
112 |
36
|
ad2antrr |
|
113 |
|
ffvelrn |
|
114 |
113
|
ad2ant2l |
|
115 |
|
eldifsn |
|
116 |
114 115
|
sylib |
|
117 |
116
|
simpld |
|
118 |
112 117
|
resubcld |
|
119 |
|
fnfvelrn |
|
120 |
28 119
|
sylan |
|
121 |
|
suprub |
|
122 |
34 120 121
|
syl2an2r |
|
123 |
122
|
ad2ant2rl |
|
124 |
116
|
simprd |
|
125 |
124
|
necomd |
|
126 |
117 112 123 125
|
leneltd |
|
127 |
117 112
|
posdifd |
|
128 |
126 127
|
mpbid |
|
129 |
128
|
gt0ne0d |
|
130 |
118 129
|
rereccld |
|
131 |
109 91 92
|
sylancl |
|
132 |
|
letr |
|
133 |
130 109 131 132
|
syl3anc |
|
134 |
111 133
|
mpan2d |
|
135 |
|
fveq2 |
|
136 |
135
|
oveq2d |
|
137 |
136
|
oveq2d |
|
138 |
|
eqid |
|
139 |
|
ovex |
|
140 |
137 138 139
|
fvmpt |
|
141 |
140
|
breq1d |
|
142 |
141
|
ad2antll |
|
143 |
102
|
adantrr |
|
144 |
100
|
adantrr |
|
145 |
131 144
|
recgt0d |
|
146 |
|
lerec |
|
147 |
143 145 118 128 146
|
syl22anc |
|
148 |
|
lesub |
|
149 |
143 112 117 148
|
syl3anc |
|
150 |
131
|
recnd |
|
151 |
101
|
adantrr |
|
152 |
150 151
|
recrecd |
|
153 |
152
|
breq2d |
|
154 |
147 149 153
|
3bitr3d |
|
155 |
134 142 154
|
3imtr4d |
|
156 |
155
|
anassrs |
|
157 |
156
|
ralimdva |
|
158 |
34
|
ad2antrr |
|
159 |
|
suprleub |
|
160 |
158 106 159
|
syl2anc |
|
161 |
28
|
ad2antrr |
|
162 |
|
breq1 |
|
163 |
162
|
ralrn |
|
164 |
161 163
|
syl |
|
165 |
160 164
|
bitrd |
|
166 |
157 165
|
sylibrd |
|
167 |
108 166
|
mtod |
|
168 |
167
|
nrexdv |
|
169 |
88 168
|
pm2.65da |
|
170 |
122
|
ralrimiva |
|
171 |
|
breq2 |
|
172 |
171
|
ralbidv |
|
173 |
170 172
|
syl5ibrcom |
|
174 |
173
|
necon3bd |
|
175 |
174
|
adantr |
|
176 |
20
|
ffvelrnda |
|
177 |
|
eldifsn |
|
178 |
177
|
baib |
|
179 |
176 178
|
syl |
|
180 |
175 179
|
sylibrd |
|
181 |
180
|
ralimdva |
|
182 |
|
ffnfv |
|
183 |
182
|
baib |
|
184 |
28 183
|
syl |
|
185 |
181 184
|
sylibrd |
|
186 |
169 185
|
mtod |
|
187 |
|
dfrex2 |
|
188 |
186 187
|
sylibr |
|