Metamath Proof Explorer


Theorem evthicc

Description: Specialization of the Extreme Value Theorem to a closed interval of RR . (Contributed by Mario Carneiro, 12-Aug-2014)

Ref Expression
Hypotheses evthicc.1 φ A
evthicc.2 φ B
evthicc.3 φ A B
evthicc.4 φ F : A B cn
Assertion evthicc φ x A B y A B F y F x z A B w A B F z F w

Proof

Step Hyp Ref Expression
1 evthicc.1 φ A
2 evthicc.2 φ B
3 evthicc.3 φ A B
4 evthicc.4 φ F : A B cn
5 eqid topGen ran . 𝑡 A B = topGen ran . 𝑡 A B
6 eqid topGen ran . = topGen ran .
7 eqid topGen ran . 𝑡 A B = topGen ran . 𝑡 A B
8 6 7 icccmp A B topGen ran . 𝑡 A B Comp
9 1 2 8 syl2anc φ topGen ran . 𝑡 A B Comp
10 iccssre A B A B
11 1 2 10 syl2anc φ A B
12 ax-resscn
13 11 12 sstrdi φ A B
14 eqid abs A B × A B = abs A B × A B
15 eqid abs 2 = abs 2
16 eqid MetOpen abs A B × A B = MetOpen abs A B × A B
17 eqid MetOpen abs 2 = MetOpen abs 2
18 15 17 tgioo topGen ran . = MetOpen abs 2
19 14 15 16 18 cncfmet A B A B cn = MetOpen abs A B × A B Cn topGen ran .
20 13 12 19 sylancl φ A B cn = MetOpen abs A B × A B Cn topGen ran .
21 6 16 resubmet A B MetOpen abs A B × A B = topGen ran . 𝑡 A B
22 11 21 syl φ MetOpen abs A B × A B = topGen ran . 𝑡 A B
23 22 oveq1d φ MetOpen abs A B × A B Cn topGen ran . = topGen ran . 𝑡 A B Cn topGen ran .
24 20 23 eqtrd φ A B cn = topGen ran . 𝑡 A B Cn topGen ran .
25 4 24 eleqtrd φ F topGen ran . 𝑡 A B Cn topGen ran .
26 retop topGen ran . Top
27 uniretop = topGen ran .
28 27 restuni topGen ran . Top A B A B = topGen ran . 𝑡 A B
29 26 11 28 sylancr φ A B = topGen ran . 𝑡 A B
30 1 rexrd φ A *
31 2 rexrd φ B *
32 lbicc2 A * B * A B A A B
33 30 31 3 32 syl3anc φ A A B
34 33 ne0d φ A B
35 29 34 eqnetrrd φ topGen ran . 𝑡 A B
36 5 6 9 25 35 evth φ x topGen ran . 𝑡 A B y topGen ran . 𝑡 A B F y F x
37 29 raleqdv φ y A B F y F x y topGen ran . 𝑡 A B F y F x
38 29 37 rexeqbidv φ x A B y A B F y F x x topGen ran . 𝑡 A B y topGen ran . 𝑡 A B F y F x
39 36 38 mpbird φ x A B y A B F y F x
40 5 6 9 25 35 evth2 φ z topGen ran . 𝑡 A B w topGen ran . 𝑡 A B F z F w
41 29 raleqdv φ w A B F z F w w topGen ran . 𝑡 A B F z F w
42 29 41 rexeqbidv φ z A B w A B F z F w z topGen ran . 𝑡 A B w topGen ran . 𝑡 A B F z F w
43 40 42 mpbird φ z A B w A B F z F w
44 39 43 jca φ x A B y A B F y F x z A B w A B F z F w