Metamath Proof Explorer


Theorem evthicc2

Description: Combine ivthicc with evthicc to exactly describe the image of a closed interval. (Contributed by Mario Carneiro, 19-Feb-2015)

Ref Expression
Hypotheses evthicc.1 φ A
evthicc.2 φ B
evthicc.3 φ A B
evthicc.4 φ F : A B cn
Assertion evthicc2 φ x y ran F = x y

Proof

Step Hyp Ref Expression
1 evthicc.1 φ A
2 evthicc.2 φ B
3 evthicc.3 φ A B
4 evthicc.4 φ F : A B cn
5 1 2 3 4 evthicc φ a A B z A B F z F a b A B z A B F b F z
6 reeanv a A B b A B z A B F z F a z A B F b F z a A B z A B F z F a b A B z A B F b F z
7 5 6 sylibr φ a A B b A B z A B F z F a z A B F b F z
8 r19.26 z A B F z F a F b F z z A B F z F a z A B F b F z
9 4 adantr φ a A B b A B F : A B cn
10 cncff F : A B cn F : A B
11 9 10 syl φ a A B b A B F : A B
12 simprr φ a A B b A B b A B
13 11 12 ffvelrnd φ a A B b A B F b
14 13 adantr φ a A B b A B z A B F z F a F b F z F b
15 simprl φ a A B b A B a A B
16 11 15 ffvelrnd φ a A B b A B F a
17 16 adantr φ a A B b A B z A B F z F a F b F z F a
18 11 adantr φ a A B b A B z A B F z F a F b F z F : A B
19 18 ffnd φ a A B b A B z A B F z F a F b F z F Fn A B
20 16 adantr φ a A B b A B z A B F a
21 elicc2 F b F a F z F b F a F z F b F z F z F a
22 13 20 21 syl2an2r φ a A B b A B z A B F z F b F a F z F b F z F z F a
23 3anass F z F b F z F z F a F z F b F z F z F a
24 22 23 bitrdi φ a A B b A B z A B F z F b F a F z F b F z F z F a
25 ancom F z F a F b F z F b F z F z F a
26 11 ffvelrnda φ a A B b A B z A B F z
27 26 biantrurd φ a A B b A B z A B F b F z F z F a F z F b F z F z F a
28 25 27 syl5bb φ a A B b A B z A B F z F a F b F z F z F b F z F z F a
29 24 28 bitr4d φ a A B b A B z A B F z F b F a F z F a F b F z
30 29 ralbidva φ a A B b A B z A B F z F b F a z A B F z F a F b F z
31 30 biimpar φ a A B b A B z A B F z F a F b F z z A B F z F b F a
32 ffnfv F : A B F b F a F Fn A B z A B F z F b F a
33 19 31 32 sylanbrc φ a A B b A B z A B F z F a F b F z F : A B F b F a
34 33 frnd φ a A B b A B z A B F z F a F b F z ran F F b F a
35 1 adantr φ a A B b A B A
36 2 adantr φ a A B b A B B
37 ssidd φ a A B b A B A B A B
38 ax-resscn
39 ssid
40 cncfss A B cn A B cn
41 38 39 40 mp2an A B cn A B cn
42 41 9 sselid φ a A B b A B F : A B cn
43 11 ffvelrnda φ a A B b A B x A B F x
44 35 36 12 15 37 42 43 ivthicc φ a A B b A B F b F a ran F
45 44 adantr φ a A B b A B z A B F z F a F b F z F b F a ran F
46 34 45 eqssd φ a A B b A B z A B F z F a F b F z ran F = F b F a
47 rspceov F b F a ran F = F b F a x y ran F = x y
48 14 17 46 47 syl3anc φ a A B b A B z A B F z F a F b F z x y ran F = x y
49 48 ex φ a A B b A B z A B F z F a F b F z x y ran F = x y
50 8 49 syl5bir φ a A B b A B z A B F z F a z A B F b F z x y ran F = x y
51 50 rexlimdvva φ a A B b A B z A B F z F a z A B F b F z x y ran F = x y
52 7 51 mpd φ x y ran F = x y