Metamath Proof Explorer


Theorem ewlkinedg

Description: The intersection (common vertices) of two adjacent edges in an s-walk of edges. (Contributed by AV, 4-Jan-2021)

Ref Expression
Hypothesis ewlksfval.i I = iEdg G
Assertion ewlkinedg F G EdgWalks S K 1 ..^ F S I F K 1 I F K

Proof

Step Hyp Ref Expression
1 ewlksfval.i I = iEdg G
2 1 ewlkprop F G EdgWalks S G V S 0 * F Word dom I k 1 ..^ F S I F k 1 I F k
3 fvoveq1 k = K F k 1 = F K 1
4 3 fveq2d k = K I F k 1 = I F K 1
5 2fveq3 k = K I F k = I F K
6 4 5 ineq12d k = K I F k 1 I F k = I F K 1 I F K
7 6 fveq2d k = K I F k 1 I F k = I F K 1 I F K
8 7 breq2d k = K S I F k 1 I F k S I F K 1 I F K
9 8 rspccv k 1 ..^ F S I F k 1 I F k K 1 ..^ F S I F K 1 I F K
10 9 3ad2ant3 G V S 0 * F Word dom I k 1 ..^ F S I F k 1 I F k K 1 ..^ F S I F K 1 I F K
11 2 10 syl F G EdgWalks S K 1 ..^ F S I F K 1 I F K
12 11 imp F G EdgWalks S K 1 ..^ F S I F K 1 I F K