Metamath Proof Explorer


Theorem ewlkle

Description: An s-walk of edges is also a t-walk of edges if t <_ s . (Contributed by AV, 4-Jan-2021)

Ref Expression
Assertion ewlkle FGEdgWalksST0*TSFGEdgWalksT

Proof

Step Hyp Ref Expression
1 eqid iEdgG=iEdgG
2 1 ewlkprop FGEdgWalksSGVS0*FWorddomiEdgGk1..^FSiEdgGFk1iEdgGFk
3 simpl2 GVS0*FWorddomiEdgGk1..^FSiEdgGFk1iEdgGFkT0*TSFWorddomiEdgG
4 xnn0xr T0*T*
5 4 adantl S0*T0*T*
6 xnn0xr S0*S*
7 6 adantr S0*T0*S*
8 fvex iEdgGFk1V
9 8 inex1 iEdgGFk1iEdgGFkV
10 hashxrcl iEdgGFk1iEdgGFkViEdgGFk1iEdgGFk*
11 9 10 mp1i S0*T0*iEdgGFk1iEdgGFk*
12 xrletr T*S*iEdgGFk1iEdgGFk*TSSiEdgGFk1iEdgGFkTiEdgGFk1iEdgGFk
13 5 7 11 12 syl3anc S0*T0*TSSiEdgGFk1iEdgGFkTiEdgGFk1iEdgGFk
14 13 exp4b S0*T0*TSSiEdgGFk1iEdgGFkTiEdgGFk1iEdgGFk
15 14 adantl GVS0*T0*TSSiEdgGFk1iEdgGFkTiEdgGFk1iEdgGFk
16 15 imp32 GVS0*T0*TSSiEdgGFk1iEdgGFkTiEdgGFk1iEdgGFk
17 16 ralimdv GVS0*T0*TSk1..^FSiEdgGFk1iEdgGFkk1..^FTiEdgGFk1iEdgGFk
18 17 ex GVS0*T0*TSk1..^FSiEdgGFk1iEdgGFkk1..^FTiEdgGFk1iEdgGFk
19 18 com23 GVS0*k1..^FSiEdgGFk1iEdgGFkT0*TSk1..^FTiEdgGFk1iEdgGFk
20 19 a1d GVS0*FWorddomiEdgGk1..^FSiEdgGFk1iEdgGFkT0*TSk1..^FTiEdgGFk1iEdgGFk
21 20 3imp1 GVS0*FWorddomiEdgGk1..^FSiEdgGFk1iEdgGFkT0*TSk1..^FTiEdgGFk1iEdgGFk
22 simpl1l GVS0*FWorddomiEdgGk1..^FSiEdgGFk1iEdgGFkT0*TSGV
23 simprl GVS0*FWorddomiEdgGk1..^FSiEdgGFk1iEdgGFkT0*TST0*
24 1 isewlk GVT0*FWorddomiEdgGFGEdgWalksTFWorddomiEdgGk1..^FTiEdgGFk1iEdgGFk
25 22 23 3 24 syl3anc GVS0*FWorddomiEdgGk1..^FSiEdgGFk1iEdgGFkT0*TSFGEdgWalksTFWorddomiEdgGk1..^FTiEdgGFk1iEdgGFk
26 3 21 25 mpbir2and GVS0*FWorddomiEdgGk1..^FSiEdgGFk1iEdgGFkT0*TSFGEdgWalksT
27 26 ex GVS0*FWorddomiEdgGk1..^FSiEdgGFk1iEdgGFkT0*TSFGEdgWalksT
28 2 27 syl FGEdgWalksST0*TSFGEdgWalksT
29 28 3impib FGEdgWalksST0*TSFGEdgWalksT