Database
GRAPH THEORY
Walks, paths and cycles
Walks
ewlkprop
Next ⟩
ewlkinedg
Metamath Proof Explorer
Ascii
Unicode
Theorem
ewlkprop
Description:
Properties of an s-walk of edges.
(Contributed by
AV
, 4-Jan-2021)
Ref
Expression
Hypothesis
ewlksfval.i
⊢
I
=
iEdg
⁡
G
Assertion
ewlkprop
⊢
F
∈
G
EdgWalks
S
→
G
∈
V
∧
S
∈
ℕ
0
*
∧
F
∈
Word
dom
⁡
I
∧
∀
k
∈
1
..^
F
S
≤
I
⁡
F
⁡
k
−
1
∩
I
⁡
F
⁡
k
Proof
Step
Hyp
Ref
Expression
1
ewlksfval.i
⊢
I
=
iEdg
⁡
G
2
df-ewlks
⊢
EdgWalks
=
g
∈
V
,
s
∈
ℕ
0
*
⟼
f
|
[
˙
iEdg
⁡
g
/
i
]
˙
f
∈
Word
dom
⁡
i
∧
∀
k
∈
1
..^
f
s
≤
i
⁡
f
⁡
k
−
1
∩
i
⁡
f
⁡
k
3
2
elmpocl
⊢
F
∈
G
EdgWalks
S
→
G
∈
V
∧
S
∈
ℕ
0
*
4
simpr
⊢
F
∈
G
EdgWalks
S
∧
G
∈
V
∧
S
∈
ℕ
0
*
→
G
∈
V
∧
S
∈
ℕ
0
*
5
1
isewlk
⊢
G
∈
V
∧
S
∈
ℕ
0
*
∧
F
∈
G
EdgWalks
S
→
F
∈
G
EdgWalks
S
↔
F
∈
Word
dom
⁡
I
∧
∀
k
∈
1
..^
F
S
≤
I
⁡
F
⁡
k
−
1
∩
I
⁡
F
⁡
k
6
5
3expa
⊢
G
∈
V
∧
S
∈
ℕ
0
*
∧
F
∈
G
EdgWalks
S
→
F
∈
G
EdgWalks
S
↔
F
∈
Word
dom
⁡
I
∧
∀
k
∈
1
..^
F
S
≤
I
⁡
F
⁡
k
−
1
∩
I
⁡
F
⁡
k
7
6
biimpd
⊢
G
∈
V
∧
S
∈
ℕ
0
*
∧
F
∈
G
EdgWalks
S
→
F
∈
G
EdgWalks
S
→
F
∈
Word
dom
⁡
I
∧
∀
k
∈
1
..^
F
S
≤
I
⁡
F
⁡
k
−
1
∩
I
⁡
F
⁡
k
8
7
expcom
⊢
F
∈
G
EdgWalks
S
→
G
∈
V
∧
S
∈
ℕ
0
*
→
F
∈
G
EdgWalks
S
→
F
∈
Word
dom
⁡
I
∧
∀
k
∈
1
..^
F
S
≤
I
⁡
F
⁡
k
−
1
∩
I
⁡
F
⁡
k
9
8
pm2.43a
⊢
F
∈
G
EdgWalks
S
→
G
∈
V
∧
S
∈
ℕ
0
*
→
F
∈
Word
dom
⁡
I
∧
∀
k
∈
1
..^
F
S
≤
I
⁡
F
⁡
k
−
1
∩
I
⁡
F
⁡
k
10
9
imp
⊢
F
∈
G
EdgWalks
S
∧
G
∈
V
∧
S
∈
ℕ
0
*
→
F
∈
Word
dom
⁡
I
∧
∀
k
∈
1
..^
F
S
≤
I
⁡
F
⁡
k
−
1
∩
I
⁡
F
⁡
k
11
3anass
⊢
G
∈
V
∧
S
∈
ℕ
0
*
∧
F
∈
Word
dom
⁡
I
∧
∀
k
∈
1
..^
F
S
≤
I
⁡
F
⁡
k
−
1
∩
I
⁡
F
⁡
k
↔
G
∈
V
∧
S
∈
ℕ
0
*
∧
F
∈
Word
dom
⁡
I
∧
∀
k
∈
1
..^
F
S
≤
I
⁡
F
⁡
k
−
1
∩
I
⁡
F
⁡
k
12
4
10
11
sylanbrc
⊢
F
∈
G
EdgWalks
S
∧
G
∈
V
∧
S
∈
ℕ
0
*
→
G
∈
V
∧
S
∈
ℕ
0
*
∧
F
∈
Word
dom
⁡
I
∧
∀
k
∈
1
..^
F
S
≤
I
⁡
F
⁡
k
−
1
∩
I
⁡
F
⁡
k
13
3
12
mpdan
⊢
F
∈
G
EdgWalks
S
→
G
∈
V
∧
S
∈
ℕ
0
*
∧
F
∈
Word
dom
⁡
I
∧
∀
k
∈
1
..^
F
S
≤
I
⁡
F
⁡
k
−
1
∩
I
⁡
F
⁡
k