Metamath Proof Explorer


Theorem ewlkprop

Description: Properties of an s-walk of edges. (Contributed by AV, 4-Jan-2021)

Ref Expression
Hypothesis ewlksfval.i I = iEdg G
Assertion ewlkprop F G EdgWalks S G V S 0 * F Word dom I k 1 ..^ F S I F k 1 I F k

Proof

Step Hyp Ref Expression
1 ewlksfval.i I = iEdg G
2 df-ewlks EdgWalks = g V , s 0 * f | [˙ iEdg g / i]˙ f Word dom i k 1 ..^ f s i f k 1 i f k
3 2 elmpocl F G EdgWalks S G V S 0 *
4 simpr F G EdgWalks S G V S 0 * G V S 0 *
5 1 isewlk G V S 0 * F G EdgWalks S F G EdgWalks S F Word dom I k 1 ..^ F S I F k 1 I F k
6 5 3expa G V S 0 * F G EdgWalks S F G EdgWalks S F Word dom I k 1 ..^ F S I F k 1 I F k
7 6 biimpd G V S 0 * F G EdgWalks S F G EdgWalks S F Word dom I k 1 ..^ F S I F k 1 I F k
8 7 expcom F G EdgWalks S G V S 0 * F G EdgWalks S F Word dom I k 1 ..^ F S I F k 1 I F k
9 8 pm2.43a F G EdgWalks S G V S 0 * F Word dom I k 1 ..^ F S I F k 1 I F k
10 9 imp F G EdgWalks S G V S 0 * F Word dom I k 1 ..^ F S I F k 1 I F k
11 3anass G V S 0 * F Word dom I k 1 ..^ F S I F k 1 I F k G V S 0 * F Word dom I k 1 ..^ F S I F k 1 I F k
12 4 10 11 sylanbrc F G EdgWalks S G V S 0 * G V S 0 * F Word dom I k 1 ..^ F S I F k 1 I F k
13 3 12 mpdan F G EdgWalks S G V S 0 * F Word dom I k 1 ..^ F S I F k 1 I F k