Metamath Proof Explorer


Theorem ewlksfval

Description: The set of s-walks of edges (in a hypergraph). (Contributed by AV, 4-Jan-2021)

Ref Expression
Hypothesis ewlksfval.i I = iEdg G
Assertion ewlksfval G W S 0 * G EdgWalks S = f | f Word dom I k 1 ..^ f S I f k 1 I f k

Proof

Step Hyp Ref Expression
1 ewlksfval.i I = iEdg G
2 df-ewlks EdgWalks = g V , s 0 * f | [˙ iEdg g / i]˙ f Word dom i k 1 ..^ f s i f k 1 i f k
3 2 a1i G W S 0 * EdgWalks = g V , s 0 * f | [˙ iEdg g / i]˙ f Word dom i k 1 ..^ f s i f k 1 i f k
4 fvexd g = G s = S iEdg g V
5 simpr g = G s = S i = iEdg g i = iEdg g
6 fveq2 g = G iEdg g = iEdg G
7 6 adantr g = G s = S iEdg g = iEdg G
8 7 adantr g = G s = S i = iEdg g iEdg g = iEdg G
9 5 8 eqtrd g = G s = S i = iEdg g i = iEdg G
10 9 dmeqd g = G s = S i = iEdg g dom i = dom iEdg G
11 wrdeq dom i = dom iEdg G Word dom i = Word dom iEdg G
12 10 11 syl g = G s = S i = iEdg g Word dom i = Word dom iEdg G
13 12 eleq2d g = G s = S i = iEdg g f Word dom i f Word dom iEdg G
14 simpr g = G s = S s = S
15 14 adantr g = G s = S i = iEdg g s = S
16 9 fveq1d g = G s = S i = iEdg g i f k 1 = iEdg G f k 1
17 9 fveq1d g = G s = S i = iEdg g i f k = iEdg G f k
18 16 17 ineq12d g = G s = S i = iEdg g i f k 1 i f k = iEdg G f k 1 iEdg G f k
19 18 fveq2d g = G s = S i = iEdg g i f k 1 i f k = iEdg G f k 1 iEdg G f k
20 15 19 breq12d g = G s = S i = iEdg g s i f k 1 i f k S iEdg G f k 1 iEdg G f k
21 20 ralbidv g = G s = S i = iEdg g k 1 ..^ f s i f k 1 i f k k 1 ..^ f S iEdg G f k 1 iEdg G f k
22 13 21 anbi12d g = G s = S i = iEdg g f Word dom i k 1 ..^ f s i f k 1 i f k f Word dom iEdg G k 1 ..^ f S iEdg G f k 1 iEdg G f k
23 4 22 sbcied g = G s = S [˙ iEdg g / i]˙ f Word dom i k 1 ..^ f s i f k 1 i f k f Word dom iEdg G k 1 ..^ f S iEdg G f k 1 iEdg G f k
24 23 abbidv g = G s = S f | [˙ iEdg g / i]˙ f Word dom i k 1 ..^ f s i f k 1 i f k = f | f Word dom iEdg G k 1 ..^ f S iEdg G f k 1 iEdg G f k
25 24 adantl G W S 0 * g = G s = S f | [˙ iEdg g / i]˙ f Word dom i k 1 ..^ f s i f k 1 i f k = f | f Word dom iEdg G k 1 ..^ f S iEdg G f k 1 iEdg G f k
26 elex G W G V
27 26 adantr G W S 0 * G V
28 simpr G W S 0 * S 0 *
29 df-rab f Word dom iEdg G | k 1 ..^ f S iEdg G f k 1 iEdg G f k = f | f Word dom iEdg G k 1 ..^ f S iEdg G f k 1 iEdg G f k
30 fvex iEdg G V
31 30 dmex dom iEdg G V
32 31 wrdexi Word dom iEdg G V
33 32 rabex f Word dom iEdg G | k 1 ..^ f S iEdg G f k 1 iEdg G f k V
34 33 a1i G W S 0 * f Word dom iEdg G | k 1 ..^ f S iEdg G f k 1 iEdg G f k V
35 29 34 eqeltrrid G W S 0 * f | f Word dom iEdg G k 1 ..^ f S iEdg G f k 1 iEdg G f k V
36 3 25 27 28 35 ovmpod G W S 0 * G EdgWalks S = f | f Word dom iEdg G k 1 ..^ f S iEdg G f k 1 iEdg G f k
37 1 eqcomi iEdg G = I
38 37 a1i G W S 0 * iEdg G = I
39 38 dmeqd G W S 0 * dom iEdg G = dom I
40 wrdeq dom iEdg G = dom I Word dom iEdg G = Word dom I
41 39 40 syl G W S 0 * Word dom iEdg G = Word dom I
42 41 eleq2d G W S 0 * f Word dom iEdg G f Word dom I
43 38 fveq1d G W S 0 * iEdg G f k 1 = I f k 1
44 38 fveq1d G W S 0 * iEdg G f k = I f k
45 43 44 ineq12d G W S 0 * iEdg G f k 1 iEdg G f k = I f k 1 I f k
46 45 fveq2d G W S 0 * iEdg G f k 1 iEdg G f k = I f k 1 I f k
47 46 breq2d G W S 0 * S iEdg G f k 1 iEdg G f k S I f k 1 I f k
48 47 ralbidv G W S 0 * k 1 ..^ f S iEdg G f k 1 iEdg G f k k 1 ..^ f S I f k 1 I f k
49 42 48 anbi12d G W S 0 * f Word dom iEdg G k 1 ..^ f S iEdg G f k 1 iEdg G f k f Word dom I k 1 ..^ f S I f k 1 I f k
50 49 abbidv G W S 0 * f | f Word dom iEdg G k 1 ..^ f S iEdg G f k 1 iEdg G f k = f | f Word dom I k 1 ..^ f S I f k 1 I f k
51 36 50 eqtrd G W S 0 * G EdgWalks S = f | f Word dom I k 1 ..^ f S I f k 1 I f k