Metamath Proof Explorer


Theorem ex-bc

Description: Example for df-bc . (Contributed by AV, 4-Sep-2021)

Ref Expression
Assertion ex-bc ( 5 3 ) = 10

Proof

Step Hyp Ref Expression
1 df-5 5 = 4 + 1
2 1 oveq1i ( 5 3 ) = ( 4 + 1 3 )
3 4bc3eq4 ( 4 3 ) = 4
4 3m1e2 3 1 = 2
5 4 oveq2i ( 4 3 1 ) = ( 4 2 )
6 4bc2eq6 ( 4 2 ) = 6
7 5 6 eqtri ( 4 3 1 ) = 6
8 3 7 oveq12i ( 4 3 ) + ( 4 3 1 ) = 4 + 6
9 4nn0 4 0
10 3z 3
11 bcpasc 4 0 3 ( 4 3 ) + ( 4 3 1 ) = ( 4 + 1 3 )
12 9 10 11 mp2an ( 4 3 ) + ( 4 3 1 ) = ( 4 + 1 3 )
13 6cn 6
14 4cn 4
15 6p4e10 6 + 4 = 10
16 13 14 15 addcomli 4 + 6 = 10
17 8 12 16 3eqtr3i ( 4 + 1 3 ) = 10
18 2 17 eqtri ( 5 3 ) = 10