Database
GUIDES AND MISCELLANEA
Guides (conventions, explanations, and examples)
Definitional examples
ex-bc
Next ⟩
ex-hash
Metamath Proof Explorer
Ascii
Unicode
Theorem
ex-bc
Description:
Example for
df-bc
.
(Contributed by
AV
, 4-Sep-2021)
Ref
Expression
Assertion
ex-bc
⊢
(
5
3
)
=
10
Proof
Step
Hyp
Ref
Expression
1
df-5
⊢
5
=
4
+
1
2
1
oveq1i
⊢
(
5
3
)
=
(
4
+
1
3
)
3
4bc3eq4
⊢
(
4
3
)
=
4
4
3m1e2
⊢
3
−
1
=
2
5
4
oveq2i
⊢
(
4
3
−
1
)
=
(
4
2
)
6
4bc2eq6
⊢
(
4
2
)
=
6
7
5
6
eqtri
⊢
(
4
3
−
1
)
=
6
8
3
7
oveq12i
⊢
(
4
3
)
+
(
4
3
−
1
)
=
4
+
6
9
4nn0
⊢
4
∈
ℕ
0
10
3z
⊢
3
∈
ℤ
11
bcpasc
⊢
4
∈
ℕ
0
∧
3
∈
ℤ
→
(
4
3
)
+
(
4
3
−
1
)
=
(
4
+
1
3
)
12
9
10
11
mp2an
⊢
(
4
3
)
+
(
4
3
−
1
)
=
(
4
+
1
3
)
13
6cn
⊢
6
∈
ℂ
14
4cn
⊢
4
∈
ℂ
15
6p4e10
⊢
6
+
4
=
10
16
13
14
15
addcomli
⊢
4
+
6
=
10
17
8
12
16
3eqtr3i
⊢
(
4
+
1
3
)
=
10
18
2
17
eqtri
⊢
(
5
3
)
=
10