Metamath Proof Explorer


Theorem ex-ceil

Description: Example for df-ceil . (Contributed by AV, 4-Sep-2021)

Ref Expression
Assertion ex-ceil 3 2 = 2 3 2 = 1

Proof

Step Hyp Ref Expression
1 ex-fl 3 2 = 1 3 2 = 2
2 3re 3
3 2 rehalfcli 3 2
4 3 renegcli 3 2
5 ceilval 3 2 3 2 = 3 2
6 4 5 ax-mp 3 2 = 3 2
7 3 recni 3 2
8 7 negnegi 3 2 = 3 2
9 8 eqcomi 3 2 = 3 2
10 9 fveq2i 3 2 = 3 2
11 10 eqeq1i 3 2 = 1 3 2 = 1
12 11 biimpi 3 2 = 1 3 2 = 1
13 12 negeqd 3 2 = 1 3 2 = 1
14 6 13 syl5eq 3 2 = 1 3 2 = 1
15 ceilval 3 2 3 2 = 3 2
16 3 15 ax-mp 3 2 = 3 2
17 negeq 3 2 = 2 3 2 = -2
18 2cn 2
19 18 negnegi -2 = 2
20 17 19 eqtrdi 3 2 = 2 3 2 = 2
21 16 20 syl5eq 3 2 = 2 3 2 = 2
22 14 21 anim12ci 3 2 = 1 3 2 = 2 3 2 = 2 3 2 = 1
23 1 22 ax-mp 3 2 = 2 3 2 = 1