Metamath Proof Explorer


Theorem ex-cnv

Description: Example for df-cnv . Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion ex-cnv 2 6 3 9 -1 = 6 2 9 3

Proof

Step Hyp Ref Expression
1 cnvun 2 6 3 9 -1 = 2 6 -1 3 9 -1
2 2nn 2
3 2 elexi 2 V
4 6nn 6
5 4 elexi 6 V
6 3 5 cnvsn 2 6 -1 = 6 2
7 3nn 3
8 7 elexi 3 V
9 9nn 9
10 9 elexi 9 V
11 8 10 cnvsn 3 9 -1 = 9 3
12 6 11 uneq12i 2 6 -1 3 9 -1 = 6 2 9 3
13 1 12 eqtri 2 6 3 9 -1 = 6 2 9 3
14 df-pr 2 6 3 9 = 2 6 3 9
15 14 cnveqi 2 6 3 9 -1 = 2 6 3 9 -1
16 df-pr 6 2 9 3 = 6 2 9 3
17 13 15 16 3eqtr4i 2 6 3 9 -1 = 6 2 9 3