Metamath Proof Explorer


Theorem ex-dif

Description: Example for df-dif . Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion ex-dif 1 3 1 8 = 3

Proof

Step Hyp Ref Expression
1 df-pr 1 3 = 1 3
2 1 difeq1i 1 3 1 8 = 1 3 1 8
3 difundir 1 3 1 8 = 1 1 8 3 1 8
4 snsspr1 1 1 8
5 ssdif0 1 1 8 1 1 8 =
6 4 5 mpbi 1 1 8 =
7 incom 3 1 8 = 1 8 3
8 1re 1
9 1lt3 1 < 3
10 8 9 gtneii 3 1
11 3re 3
12 3lt8 3 < 8
13 11 12 ltneii 3 8
14 10 13 nelpri ¬ 3 1 8
15 disjsn 1 8 3 = ¬ 3 1 8
16 14 15 mpbir 1 8 3 =
17 7 16 eqtri 3 1 8 =
18 disj3 3 1 8 = 3 = 3 1 8
19 17 18 mpbi 3 = 3 1 8
20 19 eqcomi 3 1 8 = 3
21 6 20 uneq12i 1 1 8 3 1 8 = 3
22 uncom 3 = 3
23 un0 3 = 3
24 21 22 23 3eqtri 1 1 8 3 1 8 = 3
25 2 3 24 3eqtri 1 3 1 8 = 3