Metamath Proof Explorer


Theorem ex-dm

Description: Example for df-dm . Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Assertion ex-dm F = 2 6 3 9 dom F = 2 3

Proof

Step Hyp Ref Expression
1 dmeq F = 2 6 3 9 dom F = dom 2 6 3 9
2 6nn 6
3 2 elexi 6 V
4 9nn 9
5 4 elexi 9 V
6 3 5 dmprop dom 2 6 3 9 = 2 3
7 1 6 eqtrdi F = 2 6 3 9 dom F = 2 3