Metamath Proof Explorer


Theorem ex-fl

Description: Example for df-fl . Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Assertion ex-fl 3 2 = 1 3 2 = 2

Proof

Step Hyp Ref Expression
1 1re 1
2 3re 3
3 2 rehalfcli 3 2
4 2cn 2
5 4 mulid2i 1 2 = 2
6 2lt3 2 < 3
7 5 6 eqbrtri 1 2 < 3
8 2pos 0 < 2
9 2re 2
10 1 2 9 ltmuldivi 0 < 2 1 2 < 3 1 < 3 2
11 8 10 ax-mp 1 2 < 3 1 < 3 2
12 7 11 mpbi 1 < 3 2
13 1 3 12 ltleii 1 3 2
14 3lt4 3 < 4
15 2t2e4 2 2 = 4
16 14 15 breqtrri 3 < 2 2
17 9 8 pm3.2i 2 0 < 2
18 ltdivmul 3 2 2 0 < 2 3 2 < 2 3 < 2 2
19 2 9 17 18 mp3an 3 2 < 2 3 < 2 2
20 16 19 mpbir 3 2 < 2
21 df-2 2 = 1 + 1
22 20 21 breqtri 3 2 < 1 + 1
23 1z 1
24 flbi 3 2 1 3 2 = 1 1 3 2 3 2 < 1 + 1
25 3 23 24 mp2an 3 2 = 1 1 3 2 3 2 < 1 + 1
26 13 22 25 mpbir2an 3 2 = 1
27 9 renegcli 2
28 3 renegcli 3 2
29 3 9 ltnegi 3 2 < 2 2 < 3 2
30 20 29 mpbi 2 < 3 2
31 27 28 30 ltleii 2 3 2
32 4 negcli 2
33 ax-1cn 1
34 negdi2 2 1 - 2 + 1 = - -2 - 1
35 32 33 34 mp2an - 2 + 1 = - -2 - 1
36 4 negnegi -2 = 2
37 36 oveq1i - -2 - 1 = 2 1
38 35 37 eqtri - 2 + 1 = 2 1
39 2m1e1 2 1 = 1
40 39 12 eqbrtri 2 1 < 3 2
41 38 40 eqbrtri - 2 + 1 < 3 2
42 27 1 readdcli - 2 + 1
43 42 3 ltnegcon1i - 2 + 1 < 3 2 3 2 < - 2 + 1
44 41 43 mpbi 3 2 < - 2 + 1
45 2z 2
46 znegcl 2 2
47 45 46 ax-mp 2
48 flbi 3 2 2 3 2 = 2 2 3 2 3 2 < - 2 + 1
49 28 47 48 mp2an 3 2 = 2 2 3 2 3 2 < - 2 + 1
50 31 44 49 mpbir2an 3 2 = 2
51 26 50 pm3.2i 3 2 = 1 3 2 = 2