Metamath Proof Explorer


Theorem ex-gcd

Description: Example for df-gcd . (Contributed by AV, 5-Sep-2021)

Ref Expression
Assertion ex-gcd -6 gcd 9 = 3

Proof

Step Hyp Ref Expression
1 6nn 6
2 1 nnzi 6
3 9nn 9
4 3 nnzi 9
5 neggcd 6 9 -6 gcd 9 = 6 gcd 9
6 2 4 5 mp2an -6 gcd 9 = 6 gcd 9
7 6cn 6
8 3cn 3
9 6p3e9 6 + 3 = 9
10 7 8 9 addcomli 3 + 6 = 9
11 10 eqcomi 9 = 3 + 6
12 11 oveq2i 6 gcd 9 = 6 gcd 3 + 6
13 3z 3
14 gcdcom 6 3 6 gcd 3 = 3 gcd 6
15 2 13 14 mp2an 6 gcd 3 = 3 gcd 6
16 3p3e6 3 + 3 = 6
17 16 eqcomi 6 = 3 + 3
18 17 oveq2i 3 gcd 6 = 3 gcd 3 + 3
19 15 18 eqtri 6 gcd 3 = 3 gcd 3 + 3
20 gcdadd 6 3 6 gcd 3 = 6 gcd 3 + 6
21 2 13 20 mp2an 6 gcd 3 = 6 gcd 3 + 6
22 gcdid 3 3 gcd 3 = 3
23 13 22 ax-mp 3 gcd 3 = 3
24 gcdadd 3 3 3 gcd 3 = 3 gcd 3 + 3
25 13 13 24 mp2an 3 gcd 3 = 3 gcd 3 + 3
26 3re 3
27 0re 0
28 3pos 0 < 3
29 27 26 28 ltleii 0 3
30 absid 3 0 3 3 = 3
31 26 29 30 mp2an 3 = 3
32 23 25 31 3eqtr3i 3 gcd 3 + 3 = 3
33 19 21 32 3eqtr3i 6 gcd 3 + 6 = 3
34 12 33 eqtri 6 gcd 9 = 3
35 6 34 eqtri -6 gcd 9 = 3