Metamath Proof Explorer


Theorem ex-hash

Description: Example for df-hash . (Contributed by AV, 4-Sep-2021)

Ref Expression
Assertion ex-hash 0 1 2 = 3

Proof

Step Hyp Ref Expression
1 df-tp 0 1 2 = 0 1 2
2 1 fveq2i 0 1 2 = 0 1 2
3 prfi 0 1 Fin
4 snfi 2 Fin
5 2ne0 2 0
6 1ne2 1 2
7 6 necomi 2 1
8 5 7 nelpri ¬ 2 0 1
9 disjsn 0 1 2 = ¬ 2 0 1
10 8 9 mpbir 0 1 2 =
11 hashun 0 1 Fin 2 Fin 0 1 2 = 0 1 2 = 0 1 + 2
12 3 4 10 11 mp3an 0 1 2 = 0 1 + 2
13 2 12 eqtri 0 1 2 = 0 1 + 2
14 prhash2ex 0 1 = 2
15 2z 2
16 hashsng 2 2 = 1
17 15 16 ax-mp 2 = 1
18 14 17 oveq12i 0 1 + 2 = 2 + 1
19 2p1e3 2 + 1 = 3
20 18 19 eqtri 0 1 + 2 = 3
21 13 20 eqtri 0 1 2 = 3