Metamath Proof Explorer


Theorem ex-in

Description: Example for df-in . Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion ex-in 1 3 1 8 = 1

Proof

Step Hyp Ref Expression
1 df-pr 1 8 = 1 8
2 1 ineq2i 1 3 1 8 = 1 3 1 8
3 indi 1 3 1 8 = 1 3 1 1 3 8
4 snsspr1 1 1 3
5 sseqin2 1 1 3 1 3 1 = 1
6 4 5 mpbi 1 3 1 = 1
7 1re 1
8 1lt8 1 < 8
9 7 8 gtneii 8 1
10 3re 3
11 3lt8 3 < 8
12 10 11 gtneii 8 3
13 9 12 nelpri ¬ 8 1 3
14 disjsn 1 3 8 = ¬ 8 1 3
15 13 14 mpbir 1 3 8 =
16 6 15 uneq12i 1 3 1 1 3 8 = 1
17 un0 1 = 1
18 16 17 eqtri 1 3 1 1 3 8 = 1
19 3 18 eqtri 1 3 1 8 = 1
20 2 19 eqtri 1 3 1 8 = 1