| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
1
|
oveq1d |
|
| 3 |
2
|
breq2d |
|
| 4 |
|
oveq2 |
|
| 5 |
4
|
oveq1d |
|
| 6 |
5
|
breq2d |
|
| 7 |
|
oveq2 |
|
| 8 |
7
|
oveq1d |
|
| 9 |
8
|
breq2d |
|
| 10 |
|
oveq2 |
|
| 11 |
10
|
oveq1d |
|
| 12 |
11
|
breq2d |
|
| 13 |
|
3z |
|
| 14 |
|
iddvds |
|
| 15 |
13 14
|
ax-mp |
|
| 16 |
|
4nn0 |
|
| 17 |
16
|
numexp0 |
|
| 18 |
17
|
oveq1i |
|
| 19 |
|
1p2e3 |
|
| 20 |
18 19
|
eqtri |
|
| 21 |
15 20
|
breqtrri |
|
| 22 |
13
|
a1i |
|
| 23 |
16
|
a1i |
|
| 24 |
|
simpl |
|
| 25 |
23 24
|
nn0expcld |
|
| 26 |
25
|
nn0zd |
|
| 27 |
|
2z |
|
| 28 |
27
|
a1i |
|
| 29 |
26 28
|
zaddcld |
|
| 30 |
|
4z |
|
| 31 |
30
|
a1i |
|
| 32 |
29 31
|
zmulcld |
|
| 33 |
22 28
|
zmulcld |
|
| 34 |
16
|
a1i |
|
| 35 |
|
id |
|
| 36 |
34 35
|
nn0expcld |
|
| 37 |
36
|
nn0zd |
|
| 38 |
37
|
adantr |
|
| 39 |
38 28
|
zaddcld |
|
| 40 |
|
simpr |
|
| 41 |
22 39 31 40
|
dvdsmultr1d |
|
| 42 |
|
dvdsmul1 |
|
| 43 |
13 27 42
|
mp2an |
|
| 44 |
43
|
a1i |
|
| 45 |
22 32 33 41 44
|
dvds2subd |
|
| 46 |
36
|
nn0cnd |
|
| 47 |
|
2cnd |
|
| 48 |
|
4cn |
|
| 49 |
48
|
a1i |
|
| 50 |
46 47 49
|
adddird |
|
| 51 |
50
|
oveq1d |
|
| 52 |
|
3cn |
|
| 53 |
|
2cn |
|
| 54 |
52 53
|
mulcomi |
|
| 55 |
54
|
a1i |
|
| 56 |
55
|
oveq2d |
|
| 57 |
49 35
|
expp1d |
|
| 58 |
|
ax-1cn |
|
| 59 |
|
3p1e4 |
|
| 60 |
52 58 59
|
addcomli |
|
| 61 |
60
|
eqcomi |
|
| 62 |
58 52 61
|
mvrraddi |
|
| 63 |
62
|
oveq2i |
|
| 64 |
53 48 52
|
subdii |
|
| 65 |
|
2t1e2 |
|
| 66 |
63 64 65
|
3eqtr3ri |
|
| 67 |
66
|
a1i |
|
| 68 |
57 67
|
oveq12d |
|
| 69 |
46 49
|
mulcld |
|
| 70 |
47 49
|
mulcld |
|
| 71 |
52
|
a1i |
|
| 72 |
47 71
|
mulcld |
|
| 73 |
69 70 72
|
addsubassd |
|
| 74 |
68 73
|
eqtr4d |
|
| 75 |
51 56 74
|
3eqtr4rd |
|
| 76 |
75
|
adantr |
|
| 77 |
45 76
|
breqtrrd |
|
| 78 |
77
|
ex |
|
| 79 |
3 6 9 12 21 78
|
nn0ind |
|