Metamath Proof Explorer


Theorem ex-natded5.8-2

Description: A more efficient proof of Theorem 5.8 of Clemente p. 20. For a longer line-by-line translation, see ex-natded5.8 . (Contributed by Mario Carneiro, 9-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ex-natded5.8.1 φ ψ χ ¬ θ
ex-natded5.8.2 φ τ θ
ex-natded5.8.3 φ χ
ex-natded5.8.4 φ τ
Assertion ex-natded5.8-2 φ ¬ ψ

Proof

Step Hyp Ref Expression
1 ex-natded5.8.1 φ ψ χ ¬ θ
2 ex-natded5.8.2 φ τ θ
3 ex-natded5.8.3 φ χ
4 ex-natded5.8.4 φ τ
5 4 2 mpd φ θ
6 3 1 mpan2d φ ψ ¬ θ
7 5 6 mt2d φ ¬ ψ