Metamath Proof Explorer


Theorem ex-natded9.20-2

Description: A more efficient proof of Theorem 9.20 of Clemente p. 45. Compare with ex-natded9.20 . (Contributed by David A. Wheeler, 19-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ex-natded9.20.1 φ ψ χ θ
Assertion ex-natded9.20-2 φ ψ χ ψ θ

Proof

Step Hyp Ref Expression
1 ex-natded9.20.1 φ ψ χ θ
2 1 simpld φ ψ
3 2 anim1i φ χ ψ χ
4 3 orcd φ χ ψ χ ψ θ
5 2 anim1i φ θ ψ θ
6 5 olcd φ θ ψ χ ψ θ
7 1 simprd φ χ θ
8 4 6 7 mpjaodan φ ψ χ ψ θ