Metamath Proof Explorer


Theorem ex-po

Description: Example for df-po . Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Assertion ex-po < Po ¬ Po

Proof

Step Hyp Ref Expression
1 ltso < Or
2 sopo < Or < Po
3 1 2 ax-mp < Po
4 0le0 0 0
5 0re 0
6 poirr Po 0 ¬ 0 0
7 5 6 mpan2 Po ¬ 0 0
8 4 7 mt2 ¬ Po
9 3 8 pm3.2i < Po ¬ Po