Database
GUIDES AND MISCELLANEA
Guides (conventions, explanations, and examples)
Definitional examples
ex-pr
Next ⟩
ex-br
Metamath Proof Explorer
Ascii
Unicode
Theorem
ex-pr
Description:
Example for
df-pr
.
(Contributed by
Mario Carneiro
, 7-May-2015)
Ref
Expression
Assertion
ex-pr
⊢
A
∈
1
−
1
→
A
2
=
1
Proof
Step
Hyp
Ref
Expression
1
elpri
⊢
A
∈
1
−
1
→
A
=
1
∨
A
=
−
1
2
oveq1
⊢
A
=
1
→
A
2
=
1
2
3
sq1
⊢
1
2
=
1
4
2
3
eqtrdi
⊢
A
=
1
→
A
2
=
1
5
oveq1
⊢
A
=
−
1
→
A
2
=
−
1
2
6
neg1sqe1
⊢
−
1
2
=
1
7
5
6
eqtrdi
⊢
A
=
−
1
→
A
2
=
1
8
4
7
jaoi
⊢
A
=
1
∨
A
=
−
1
→
A
2
=
1
9
1
8
syl
⊢
A
∈
1
−
1
→
A
2
=
1