Metamath Proof Explorer


Theorem ex-prmo

Description: Example for df-prmo : ( #p1 0 ) = 2 x. 3 x. 5 x. 7 . (Contributed by AV, 6-Sep-2021)

Ref Expression
Assertion ex-prmo # p 10 = 210

Proof

Step Hyp Ref Expression
1 10nn 10
2 prmonn2 10 # p 10 = if 10 # p 10 1 10 # p 10 1
3 1 2 ax-mp # p 10 = if 10 # p 10 1 10 # p 10 1
4 10nprm ¬ 10
5 4 iffalsei if 10 # p 10 1 10 # p 10 1 = # p 10 1
6 3 5 eqtri # p 10 = # p 10 1
7 10m1e9 10 1 = 9
8 7 fveq2i # p 10 1 = # p 9
9 9nn 9
10 prmonn2 9 # p 9 = if 9 # p 9 1 9 # p 9 1
11 9 10 ax-mp # p 9 = if 9 # p 9 1 9 # p 9 1
12 9nprm ¬ 9
13 12 iffalsei if 9 # p 9 1 9 # p 9 1 = # p 9 1
14 11 13 eqtri # p 9 = # p 9 1
15 9m1e8 9 1 = 8
16 15 fveq2i # p 9 1 = # p 8
17 8nn 8
18 prmonn2 8 # p 8 = if 8 # p 8 1 8 # p 8 1
19 17 18 ax-mp # p 8 = if 8 # p 8 1 8 # p 8 1
20 8nprm ¬ 8
21 20 iffalsei if 8 # p 8 1 8 # p 8 1 = # p 8 1
22 19 21 eqtri # p 8 = # p 8 1
23 8m1e7 8 1 = 7
24 23 fveq2i # p 8 1 = # p 7
25 7nn 7
26 prmonn2 7 # p 7 = if 7 # p 7 1 7 # p 7 1
27 25 26 ax-mp # p 7 = if 7 # p 7 1 7 # p 7 1
28 7prm 7
29 28 iftruei if 7 # p 7 1 7 # p 7 1 = # p 7 1 7
30 7nn0 7 0
31 3nn0 3 0
32 0nn0 0 0
33 7m1e6 7 1 = 6
34 33 fveq2i # p 7 1 = # p 6
35 prmo6 # p 6 = 30
36 34 35 eqtri # p 7 1 = 30
37 7cn 7
38 3cn 3
39 7t3e21 7 3 = 21
40 37 38 39 mulcomli 3 7 = 21
41 37 mul02i 0 7 = 0
42 30 31 32 36 40 41 decmul1 # p 7 1 7 = 210
43 27 29 42 3eqtri # p 7 = 210
44 22 24 43 3eqtri # p 8 = 210
45 14 16 44 3eqtri # p 9 = 210
46 6 8 45 3eqtri # p 10 = 210