Metamath Proof Explorer


Theorem ex-sategoel

Description: Instance of sategoelfv for the example of a valuation of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023)

Ref Expression
Hypotheses sategoelfvb.s E = M Sat A 𝑔 B
ex-sategoelel.s S = x ω if x = A Z if x = B 𝒫 Z
Assertion ex-sategoel M WUni Z M A ω B ω A B S A S B

Proof

Step Hyp Ref Expression
1 sategoelfvb.s E = M Sat A 𝑔 B
2 ex-sategoelel.s S = x ω if x = A Z if x = B 𝒫 Z
3 simpll M WUni Z M A ω B ω A B M WUni
4 3simpa A ω B ω A B A ω B ω
5 4 adantl M WUni Z M A ω B ω A B A ω B ω
6 1 2 ex-sategoelel M WUni Z M A ω B ω A B S E
7 1 sategoelfv M WUni A ω B ω S E S A S B
8 3 5 6 7 syl3anc M WUni Z M A ω B ω A B S A S B