Metamath Proof Explorer


Theorem ex-sategoelel

Description: Example of a valuation of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023)

Ref Expression
Hypotheses sategoelfvb.s E = M Sat A 𝑔 B
ex-sategoelel.s S = x ω if x = A Z if x = B 𝒫 Z
Assertion ex-sategoelel M WUni Z M A ω B ω A B S E

Proof

Step Hyp Ref Expression
1 sategoelfvb.s E = M Sat A 𝑔 B
2 ex-sategoelel.s S = x ω if x = A Z if x = B 𝒫 Z
3 simpr M WUni Z M Z M
4 simpl M WUni Z M M WUni
5 4 3 wunpw M WUni Z M 𝒫 Z M
6 4 wun0 M WUni Z M M
7 5 6 ifcld M WUni Z M if x = B 𝒫 Z M
8 3 7 ifcld M WUni Z M if x = A Z if x = B 𝒫 Z M
9 8 adantr M WUni Z M A ω B ω A B if x = A Z if x = B 𝒫 Z M
10 9 adantr M WUni Z M A ω B ω A B x ω if x = A Z if x = B 𝒫 Z M
11 10 2 fmptd M WUni Z M A ω B ω A B S : ω M
12 4 adantr M WUni Z M A ω B ω A B M WUni
13 omex ω V
14 13 a1i M WUni Z M A ω B ω A B ω V
15 12 14 elmapd M WUni Z M A ω B ω A B S M ω S : ω M
16 11 15 mpbird M WUni Z M A ω B ω A B S M ω
17 pwidg Z M Z 𝒫 Z
18 17 adantl M WUni Z M Z 𝒫 Z
19 18 adantr M WUni Z M A ω B ω A B Z 𝒫 Z
20 2 a1i M WUni Z M A ω B ω A B S = x ω if x = A Z if x = B 𝒫 Z
21 iftrue x = A if x = A Z if x = B 𝒫 Z = Z
22 21 adantl M WUni Z M A ω B ω A B x = A if x = A Z if x = B 𝒫 Z = Z
23 simpr1 M WUni Z M A ω B ω A B A ω
24 3 adantr M WUni Z M A ω B ω A B Z M
25 20 22 23 24 fvmptd M WUni Z M A ω B ω A B S A = Z
26 eqeq1 x = B x = A B = A
27 eqeq1 x = B x = B B = B
28 27 ifbid x = B if x = B 𝒫 Z = if B = B 𝒫 Z
29 26 28 ifbieq2d x = B if x = A Z if x = B 𝒫 Z = if B = A Z if B = B 𝒫 Z
30 necom A B B A
31 ifnefalse B A if B = A Z if B = B 𝒫 Z = if B = B 𝒫 Z
32 30 31 sylbi A B if B = A Z if B = B 𝒫 Z = if B = B 𝒫 Z
33 32 3ad2ant3 A ω B ω A B if B = A Z if B = B 𝒫 Z = if B = B 𝒫 Z
34 33 adantl M WUni Z M A ω B ω A B if B = A Z if B = B 𝒫 Z = if B = B 𝒫 Z
35 29 34 sylan9eqr M WUni Z M A ω B ω A B x = B if x = A Z if x = B 𝒫 Z = if B = B 𝒫 Z
36 simpr2 M WUni Z M A ω B ω A B B ω
37 pwexg Z M 𝒫 Z V
38 37 adantl M WUni Z M 𝒫 Z V
39 0ex V
40 39 a1i M WUni Z M V
41 38 40 ifcld M WUni Z M if B = B 𝒫 Z V
42 41 adantr M WUni Z M A ω B ω A B if B = B 𝒫 Z V
43 20 35 36 42 fvmptd M WUni Z M A ω B ω A B S B = if B = B 𝒫 Z
44 eqid B = B
45 44 iftruei if B = B 𝒫 Z = 𝒫 Z
46 43 45 eqtrdi M WUni Z M A ω B ω A B S B = 𝒫 Z
47 19 25 46 3eltr4d M WUni Z M A ω B ω A B S A S B
48 3simpa A ω B ω A B A ω B ω
49 1 sategoelfvb M WUni A ω B ω S E S M ω S A S B
50 4 48 49 syl2an M WUni Z M A ω B ω A B S E S M ω S A S B
51 16 47 50 mpbir2and M WUni Z M A ω B ω A B S E