Metamath Proof Explorer


Theorem ex-xp

Description: Example for df-xp . Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Assertion ex-xp 1 5 × 2 7 = 1 2 1 7 5 2 5 7

Proof

Step Hyp Ref Expression
1 df-pr 1 5 = 1 5
2 df-pr 2 7 = 2 7
3 1 2 xpeq12i 1 5 × 2 7 = 1 5 × 2 7
4 xpun 1 5 × 2 7 = 1 × 2 1 × 7 5 × 2 5 × 7
5 1ex 1 V
6 2nn 2
7 6 elexi 2 V
8 5 7 xpsn 1 × 2 = 1 2
9 7nn 7
10 9 elexi 7 V
11 5 10 xpsn 1 × 7 = 1 7
12 8 11 uneq12i 1 × 2 1 × 7 = 1 2 1 7
13 df-pr 1 2 1 7 = 1 2 1 7
14 12 13 eqtr4i 1 × 2 1 × 7 = 1 2 1 7
15 5nn 5
16 15 elexi 5 V
17 16 7 xpsn 5 × 2 = 5 2
18 16 10 xpsn 5 × 7 = 5 7
19 17 18 uneq12i 5 × 2 5 × 7 = 5 2 5 7
20 df-pr 5 2 5 7 = 5 2 5 7
21 19 20 eqtr4i 5 × 2 5 × 7 = 5 2 5 7
22 14 21 uneq12i 1 × 2 1 × 7 5 × 2 5 × 7 = 1 2 1 7 5 2 5 7
23 3 4 22 3eqtri 1 5 × 2 7 = 1 2 1 7 5 2 5 7