Metamath Proof Explorer


Theorem exanali

Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 25-Mar-1996) (Proof shortened by Wolf Lammen, 4-Sep-2014)

Ref Expression
Assertion exanali x φ ¬ ψ ¬ x φ ψ

Proof

Step Hyp Ref Expression
1 annim φ ¬ ψ ¬ φ ψ
2 1 exbii x φ ¬ ψ x ¬ φ ψ
3 exnal x ¬ φ ψ ¬ x φ ψ
4 2 3 bitri x φ ¬ ψ ¬ x φ ψ