Metamath Proof Explorer


Theorem exatleN

Description: A condition for an atom to be less than or equal to a lattice element. Part of proof of Lemma A in Crawley p. 112. (Contributed by NM, 28-Apr-2012) (New usage is discouraged.)

Ref Expression
Hypotheses atomle.b B = Base K
atomle.l ˙ = K
atomle.j ˙ = join K
atomle.a A = Atoms K
Assertion exatleN K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R ˙ X R = P

Proof

Step Hyp Ref Expression
1 atomle.b B = Base K
2 atomle.l ˙ = K
3 atomle.j ˙ = join K
4 atomle.a A = Atoms K
5 simpl32 K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P ¬ Q ˙ X
6 simp11l K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P R ˙ X K HL
7 6 hllatd K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P R ˙ X K Lat
8 simp122 K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P R ˙ X Q A
9 1 4 atbase Q A Q B
10 8 9 syl K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P R ˙ X Q B
11 simp121 K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P R ˙ X P A
12 1 4 atbase P A P B
13 11 12 syl K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P R ˙ X P B
14 simp123 K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P R ˙ X R A
15 1 4 atbase R A R B
16 14 15 syl K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P R ˙ X R B
17 1 3 latjcl K Lat P B R B P ˙ R B
18 7 13 16 17 syl3anc K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P R ˙ X P ˙ R B
19 simp11r K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P R ˙ X X B
20 14 8 11 3jca K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P R ˙ X R A Q A P A
21 simp2 K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P R ˙ X R P
22 6 20 21 3jca K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P R ˙ X K HL R A Q A P A R P
23 simp133 K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P R ˙ X R ˙ P ˙ Q
24 2 3 4 hlatexch1 K HL R A Q A P A R P R ˙ P ˙ Q Q ˙ P ˙ R
25 22 23 24 sylc K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P R ˙ X Q ˙ P ˙ R
26 simp131 K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P R ˙ X P ˙ X
27 simp3 K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P R ˙ X R ˙ X
28 1 2 3 latjle12 K Lat P B R B X B P ˙ X R ˙ X P ˙ R ˙ X
29 7 13 16 19 28 syl13anc K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P R ˙ X P ˙ X R ˙ X P ˙ R ˙ X
30 26 27 29 mpbi2and K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P R ˙ X P ˙ R ˙ X
31 1 2 7 10 18 19 25 30 lattrd K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P R ˙ X Q ˙ X
32 31 3expia K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P R ˙ X Q ˙ X
33 5 32 mtod K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P ¬ R ˙ X
34 33 ex K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R P ¬ R ˙ X
35 34 necon4ad K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R ˙ X R = P
36 simp31 K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q P ˙ X
37 breq1 R = P R ˙ X P ˙ X
38 36 37 syl5ibrcom K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R = P R ˙ X
39 35 38 impbid K HL X B P A Q A R A P ˙ X ¬ Q ˙ X R ˙ P ˙ Q R ˙ X R = P