Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
Logical "xor"
excxor
Next ⟩
xor2
Metamath Proof Explorer
Ascii
Unicode
Theorem
excxor
Description:
This tautology shows that xor is really exclusive.
(Contributed by
FL
, 22-Nov-2010)
Ref
Expression
Assertion
excxor
⊢
φ
⊻
ψ
↔
φ
∧
¬
ψ
∨
¬
φ
∧
ψ
Proof
Step
Hyp
Ref
Expression
1
df-xor
⊢
φ
⊻
ψ
↔
¬
φ
↔
ψ
2
xor
⊢
¬
φ
↔
ψ
↔
φ
∧
¬
ψ
∨
ψ
∧
¬
φ
3
ancom
⊢
ψ
∧
¬
φ
↔
¬
φ
∧
ψ
4
3
orbi2i
⊢
φ
∧
¬
ψ
∨
ψ
∧
¬
φ
↔
φ
∧
¬
ψ
∨
¬
φ
∧
ψ
5
1
2
4
3bitri
⊢
φ
⊻
ψ
↔
φ
∧
¬
ψ
∨
¬
φ
∧
ψ