Metamath Proof Explorer


Theorem excxor

Description: This tautology shows that xor is really exclusive. (Contributed by FL, 22-Nov-2010)

Ref Expression
Assertion excxor φψφ¬ψ¬φψ

Proof

Step Hyp Ref Expression
1 df-xor φψ¬φψ
2 xor ¬φψφ¬ψψ¬φ
3 ancom ψ¬φ¬φψ
4 3 orbi2i φ¬ψψ¬φφ¬ψ¬φψ
5 1 2 4 3bitri φψφ¬ψ¬φψ