Metamath Proof Explorer


Theorem excxor

Description: This tautology shows that xor is really exclusive. (Contributed by FL, 22-Nov-2010)

Ref Expression
Assertion excxor φ ψ φ ¬ ψ ¬ φ ψ

Proof

Step Hyp Ref Expression
1 df-xor φ ψ ¬ φ ψ
2 xor ¬ φ ψ φ ¬ ψ ψ ¬ φ
3 ancom ψ ¬ φ ¬ φ ψ
4 3 orbi2i φ ¬ ψ ψ ¬ φ φ ¬ ψ ¬ φ ψ
5 1 2 4 3bitri φ ψ φ ¬ ψ ¬ φ ψ