Metamath Proof Explorer


Theorem exexw

Description: Existential quantification is idempotent. Weak version of bj-exexbiex , requiring fewer axioms. (Contributed by Gino Giotto, 4-Nov-2024)

Ref Expression
Hypothesis exexw.1 x = y φ ψ
Assertion exexw x φ x x φ

Proof

Step Hyp Ref Expression
1 exexw.1 x = y φ ψ
2 1 notbid x = y ¬ φ ¬ ψ
3 2 hba1w x ¬ φ x x ¬ φ
4 2 spw x ¬ φ ¬ φ
5 4 alimi x x ¬ φ x ¬ φ
6 3 5 impbii x ¬ φ x x ¬ φ
7 6 notbii ¬ x ¬ φ ¬ x x ¬ φ
8 df-ex x φ ¬ x ¬ φ
9 2exnaln x x φ ¬ x x ¬ φ
10 7 8 9 3bitr4i x φ x x φ