Metamath Proof Explorer


Theorem exidres

Description: The restriction of a binary operation with identity to a subset containing the identity has an identity element. (Contributed by Jeff Madsen, 8-Jun-2010) (Revised by Mario Carneiro, 23-Dec-2013)

Ref Expression
Hypotheses exidres.1 X = ran G
exidres.2 U = GId G
exidres.3 H = G Y × Y
Assertion exidres G Magma ExId Y X U Y H ExId

Proof

Step Hyp Ref Expression
1 exidres.1 X = ran G
2 exidres.2 U = GId G
3 exidres.3 H = G Y × Y
4 1 2 3 exidreslem G Magma ExId Y X U Y U dom dom H x dom dom H U H x = x x H U = x
5 oveq1 u = U u H x = U H x
6 5 eqeq1d u = U u H x = x U H x = x
7 6 ovanraleqv u = U x dom dom H u H x = x x H u = x x dom dom H U H x = x x H U = x
8 7 rspcev U dom dom H x dom dom H U H x = x x H U = x u dom dom H x dom dom H u H x = x x H u = x
9 4 8 syl G Magma ExId Y X U Y u dom dom H x dom dom H u H x = x x H u = x
10 resexg G Magma ExId G Y × Y V
11 3 10 eqeltrid G Magma ExId H V
12 eqid dom dom H = dom dom H
13 12 isexid H V H ExId u dom dom H x dom dom H u H x = x x H u = x
14 11 13 syl G Magma ExId H ExId u dom dom H x dom dom H u H x = x x H u = x
15 14 3ad2ant1 G Magma ExId Y X U Y H ExId u dom dom H x dom dom H u H x = x x H u = x
16 9 15 mpbird G Magma ExId Y X U Y H ExId