Metamath Proof Explorer


Theorem exidres

Description: The restriction of a binary operation with identity to a subset containing the identity has an identity element. (Contributed by Jeff Madsen, 8-Jun-2010) (Revised by Mario Carneiro, 23-Dec-2013)

Ref Expression
Hypotheses exidres.1 X=ranG
exidres.2 U=GIdG
exidres.3 H=GY×Y
Assertion exidres GMagmaExIdYXUYHExId

Proof

Step Hyp Ref Expression
1 exidres.1 X=ranG
2 exidres.2 U=GIdG
3 exidres.3 H=GY×Y
4 1 2 3 exidreslem GMagmaExIdYXUYUdomdomHxdomdomHUHx=xxHU=x
5 oveq1 u=UuHx=UHx
6 5 eqeq1d u=UuHx=xUHx=x
7 6 ovanraleqv u=UxdomdomHuHx=xxHu=xxdomdomHUHx=xxHU=x
8 7 rspcev UdomdomHxdomdomHUHx=xxHU=xudomdomHxdomdomHuHx=xxHu=x
9 4 8 syl GMagmaExIdYXUYudomdomHxdomdomHuHx=xxHu=x
10 resexg GMagmaExIdGY×YV
11 3 10 eqeltrid GMagmaExIdHV
12 eqid domdomH=domdomH
13 12 isexid HVHExIdudomdomHxdomdomHuHx=xxHu=x
14 11 13 syl GMagmaExIdHExIdudomdomHxdomdomHuHx=xxHu=x
15 14 3ad2ant1 GMagmaExIdYXUYHExIdudomdomHxdomdomHuHx=xxHu=x
16 9 15 mpbird GMagmaExIdYXUYHExId