Metamath Proof Explorer


Theorem exidresid

Description: The restriction of a binary operation with identity to a subset containing the identity has the same identity element. (Contributed by Jeff Madsen, 8-Jun-2010) (Revised by Mario Carneiro, 23-Dec-2013)

Ref Expression
Hypotheses exidres.1 X = ran G
exidres.2 U = GId G
exidres.3 H = G Y × Y
Assertion exidresid G Magma ExId Y X U Y H Magma GId H = U

Proof

Step Hyp Ref Expression
1 exidres.1 X = ran G
2 exidres.2 U = GId G
3 exidres.3 H = G Y × Y
4 resexg G Magma ExId G Y × Y V
5 3 4 eqeltrid G Magma ExId H V
6 eqid ran H = ran H
7 6 gidval H V GId H = ι u ran H | x ran H u H x = x x H u = x
8 5 7 syl G Magma ExId GId H = ι u ran H | x ran H u H x = x x H u = x
9 8 3ad2ant1 G Magma ExId Y X U Y GId H = ι u ran H | x ran H u H x = x x H u = x
10 9 adantr G Magma ExId Y X U Y H Magma GId H = ι u ran H | x ran H u H x = x x H u = x
11 1 2 3 exidreslem G Magma ExId Y X U Y U dom dom H x dom dom H U H x = x x H U = x
12 11 simprd G Magma ExId Y X U Y x dom dom H U H x = x x H U = x
13 12 adantr G Magma ExId Y X U Y H Magma x dom dom H U H x = x x H U = x
14 1 2 3 exidres G Magma ExId Y X U Y H ExId
15 elin H Magma ExId H Magma H ExId
16 rngopidOLD H Magma ExId ran H = dom dom H
17 15 16 sylbir H Magma H ExId ran H = dom dom H
18 17 ancoms H ExId H Magma ran H = dom dom H
19 14 18 sylan G Magma ExId Y X U Y H Magma ran H = dom dom H
20 19 raleqdv G Magma ExId Y X U Y H Magma x ran H U H x = x x H U = x x dom dom H U H x = x x H U = x
21 13 20 mpbird G Magma ExId Y X U Y H Magma x ran H U H x = x x H U = x
22 11 simpld G Magma ExId Y X U Y U dom dom H
23 22 adantr G Magma ExId Y X U Y H Magma U dom dom H
24 23 19 eleqtrrd G Magma ExId Y X U Y H Magma U ran H
25 6 exidu1 H Magma ExId ∃! u ran H x ran H u H x = x x H u = x
26 15 25 sylbir H Magma H ExId ∃! u ran H x ran H u H x = x x H u = x
27 26 ancoms H ExId H Magma ∃! u ran H x ran H u H x = x x H u = x
28 14 27 sylan G Magma ExId Y X U Y H Magma ∃! u ran H x ran H u H x = x x H u = x
29 oveq1 u = U u H x = U H x
30 29 eqeq1d u = U u H x = x U H x = x
31 30 ovanraleqv u = U x ran H u H x = x x H u = x x ran H U H x = x x H U = x
32 31 riota2 U ran H ∃! u ran H x ran H u H x = x x H u = x x ran H U H x = x x H U = x ι u ran H | x ran H u H x = x x H u = x = U
33 24 28 32 syl2anc G Magma ExId Y X U Y H Magma x ran H U H x = x x H U = x ι u ran H | x ran H u H x = x x H u = x = U
34 21 33 mpbid G Magma ExId Y X U Y H Magma ι u ran H | x ran H u H x = x x H u = x = U
35 10 34 eqtrd G Magma ExId Y X U Y H Magma GId H = U