Metamath Proof Explorer


Theorem exists2

Description: A condition implying that at least two things exist. (Contributed by NM, 10-Apr-2004) (Proof shortened by Andrew Salmon, 9-Jul-2011) Reduce axiom usage. (Revised by Wolf Lammen, 4-Mar-2023)

Ref Expression
Assertion exists2 x φ x ¬ φ ¬ ∃! x x = x

Proof

Step Hyp Ref Expression
1 axc16nf x x = y x φ
2 1 nfrd x x = y x φ x φ
3 2 com12 x φ x x = y x φ
4 exists1 ∃! x x = x x x = y
5 alex x φ ¬ x ¬ φ
6 5 bicomi ¬ x ¬ φ x φ
7 3 4 6 3imtr4g x φ ∃! x x = x ¬ x ¬ φ
8 7 con2d x φ x ¬ φ ¬ ∃! x x = x
9 8 imp x φ x ¬ φ ¬ ∃! x x = x