Metamath Proof Explorer


Theorem exlimdd

Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017) (Proof shortened by Wolf Lammen, 3-Sep-2023)

Ref Expression
Hypotheses exlimdd.1 x φ
exlimdd.2 x χ
exlimdd.3 φ x ψ
exlimdd.4 φ ψ χ
Assertion exlimdd φ χ

Proof

Step Hyp Ref Expression
1 exlimdd.1 x φ
2 exlimdd.2 x χ
3 exlimdd.3 φ x ψ
4 exlimdd.4 φ ψ χ
5 4 ex φ ψ χ
6 1 2 3 5 exlimimdd φ χ