Metamath Proof Explorer


Theorem exlimddv

Description: Existential elimination rule of natural deduction (Rule C, explained in exlimiv ). (Contributed by Mario Carneiro, 15-Jun-2016)

Ref Expression
Hypotheses exlimddv.1 φ x ψ
exlimddv.2 φ ψ χ
Assertion exlimddv φ χ

Proof

Step Hyp Ref Expression
1 exlimddv.1 φ x ψ
2 exlimddv.2 φ ψ χ
3 2 ex φ ψ χ
4 3 exlimdv φ x ψ χ
5 1 4 mpd φ χ