Metamath Proof Explorer


Theorem exlimimdd

Description: Existential elimination rule of natural deduction. (Contributed by ML, 17-Jul-2020) Shorten exlimdd . (Revised by Wolf Lammen, 3-Sep-2023)

Ref Expression
Hypotheses exlimdd.1 x φ
exlimdd.2 x χ
exlimdd.3 φ x ψ
exlimimdd.4 φ ψ χ
Assertion exlimimdd φ χ

Proof

Step Hyp Ref Expression
1 exlimdd.1 x φ
2 exlimdd.2 x χ
3 exlimdd.3 φ x ψ
4 exlimimdd.4 φ ψ χ
5 1 2 4 exlimd φ x ψ χ
6 3 5 mpd φ χ