Metamath Proof Explorer


Theorem exmoeu

Description: Existence is equivalent to uniqueness implying existential uniqueness. (Contributed by NM, 5-Apr-2004) (Proof shortened by Wolf Lammen, 5-Dec-2018) (Proof shortened by BJ, 7-Oct-2022)

Ref Expression
Assertion exmoeu x φ * x φ ∃! x φ

Proof

Step Hyp Ref Expression
1 exmoeub x φ * x φ ∃! x φ
2 1 biimpd x φ * x φ ∃! x φ
3 nexmo ¬ x φ * x φ
4 3 con1i ¬ * x φ x φ
5 euex ∃! x φ x φ
6 4 5 ja * x φ ∃! x φ x φ
7 2 6 impbii x φ * x φ ∃! x φ