Metamath Proof Explorer


Theorem exmoeub

Description: Existence implies that uniqueness is equivalent to unique existence. (Contributed by NM, 5-Apr-2004)

Ref Expression
Assertion exmoeub x φ * x φ ∃! x φ

Proof

Step Hyp Ref Expression
1 df-eu ∃! x φ x φ * x φ
2 1 baibr x φ * x φ ∃! x φ